Thursday, January 9, 2025
Google search engine
HomeData Modelling & AINumber of ways to select a node from each connected component

Number of ways to select a node from each connected component

Given a graph with N nodes and M edges. The task is to find the number of ways to select a node from each connected component of the given graph.
Examples: 
 

Input: 
 

Output:
(1, 4), (2, 4), (3, 4) are possible ways.
Input: 
 

Output:
(1, 4, 5), (2, 4, 5), (3, 4, 5), (1, 4, 6), (2, 4, 6), (3, 4, 6) are possible ways. 
 

 

Approach: A product of the number of nodes in each connected component is the required answer. Run a simple dfs to find the number of nodes in each connected component.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 100005
 
int n, m, temp;
vector<int> gr[N];
int vis[N];
 
// Function to add edges in the graph
void Add_edges(int x, int y)
{
    gr[x].push_back(y);
    gr[y].push_back(x);
}
 
// Function for DFS
void dfs(int ch)
{
    // Mark node as visited
    vis[ch] = 1;
 
    // Count number of nodes in a component
    temp++;
    for (auto i : gr[ch])
        if (!vis[i])
            dfs(i);
}
 
// Function to return the required number of ways
int NumberOfWays()
{
 
    // To store the required answer
    int ans = 1;
 
    memset(vis, 0, sizeof vis);
    for (int i = 1; i <= n; i++) {
 
        // If current node hasn't been visited yet
        if (!vis[i]) {
            temp = 0;
            dfs(i);
 
            // Multiply it with the answer
            ans *= temp;
        }
    }
 
    return ans;
}
 
// Driver code
int main()
{
    n = 4, m = 2;
 
    // Add edges
    Add_edges(1, 2);
    Add_edges(1, 3);
 
    cout << NumberOfWays();
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static final int N = 100005;
 
static int n, m, temp;
static Vector<Integer> []gr = new Vector[N];
static int []vis = new int[N];
 
// Function to add edges in the graph
static void Add_edges(int x, int y)
{
    gr[x].add(y);
    gr[y].add(x);
}
 
// Function for DFS
static void dfs(int ch)
{
    // Mark node as visited
    vis[ch] = 1;
 
    // Count number of nodes in a component
    temp++;
    for (int i : gr[ch])
        if (vis[i] == 0)
            dfs(i);
}
 
// Function to return the required number of ways
static int NumberOfWays()
{
 
    // To store the required answer
    int ans = 1;
    Arrays.fill(vis, 0);
 
    for (int i = 1; i <= n; i++)
    {
 
        // If current node hasn't been visited yet
        if (vis[i] == 0)
        {
            temp = 0;
            dfs(i);
 
            // Multiply it with the answer
            ans *= temp;
        }
    }
 
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    n = 4;
    m = 2;
    for (int i = 0; i < N; i++)
        gr[i] = new Vector<Integer>();
     
    // Add edges
    Add_edges(1, 2);
    Add_edges(1, 3);
 
    System.out.print(NumberOfWays());
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Function to add edges in the graph
def Add_edges(x, y):
 
    gr[x].append(y)
    gr[y].append(x)
 
# Function for DFS
def dfs(ch):
 
    # Mark node as visited
    vis[ch] = 1
    global temp
     
    # Count number of nodes
    # in a component
    temp += 1
    for i in gr[ch]:
        if not vis[i]:
            dfs(i)
 
# Function to return the required
# number of ways
def NumberOfWays():
 
    # To store the required answer
    ans = 1
    global temp
     
    for i in range(1, n + 1):
 
        # If current node hasn't been
        # visited yet
        if not vis[i]:
            temp = 0
            dfs(i)
 
            # Multiply it with the answer
            ans *= temp
         
    return ans
 
# Driver code
if __name__ == "__main__":
 
    n, m, temp = 4, 2, 0
    N = 100005
 
    gr = [[] for i in range(N)]
    vis = [None] * N
 
    # Add edges
    Add_edges(1, 2)
    Add_edges(1, 3)
 
    print(NumberOfWays())
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
static readonly int N = 100005;
 
static int n, m, temp;
static List<int> []gr = new List<int>[N];
static int []vis = new int[N];
 
// Function to add edges in the graph
static void Add_edges(int x, int y)
{
    gr[x].Add(y);
    gr[y].Add(x);
}
 
// Function for DFS
static void dfs(int ch)
{
    // Mark node as visited
    vis[ch] = 1;
 
    // Count number of nodes in a component
    temp++;
    foreach (int i in gr[ch])
        if (vis[i] == 0)
            dfs(i);
}
 
// Function to return the required number of ways
static int NumberOfWays()
{
 
    // To store the required answer
    int ans = 1;
    for(int i= 0; i < N; i++)
        vis[i] = 0;
 
    for (int i = 1; i <= n; i++)
    {
 
        // If current node hasn't been visited yet
        if (vis[i] == 0)
        {
            temp = 0;
            dfs(i);
 
            // Multiply it with the answer
            ans *= temp;
        }
    }
 
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    n = 4;
    m = 2;
    for (int i = 0; i < N; i++)
        gr[i] = new List<int>();
     
    // Add edges
    Add_edges(1, 2);
    Add_edges(1, 3);
 
    Console.Write(NumberOfWays());
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript implementation of the approach
 
let N = 100005;
 
let n, m, temp;
 
let gr = new Array(N);
let vis = new Array(N);
 
// Function to add edges in the graph
function Add_edges(x,y)
{
    gr[x].push(y);
    gr[y].push(x);
}
 
// Function for DFS
function dfs(ch)
{
    // Mark node as visited
    vis[ch] = 1;
   
    // Count number of nodes in a component
    temp++;
    for (let i of gr[ch])
        if (vis[i] == 0)
            dfs(i);
}
 
// Function to return the required number of ways
function NumberOfWays()
{
    // To store the required answer
    let ans = 1;
    for(let i=0;i<vis.length;i++)
        vis[i]=0;
   
    for (let i = 1; i <= n; i++)
    {
   
        // If current node hasn't been visited yet
        if (vis[i] == 0)
        {
            temp = 0;
            dfs(i);
   
            // Multiply it with the answer
            ans *= temp;
        }
    }
   
    return ans;
}
 
// Driver code
n = 4;
m = 2;
for (let i = 0; i < N; i++)
    gr[i] = [];
 
// Add edges
Add_edges(1, 2);
Add_edges(1, 3);
 
document.write(NumberOfWays());
 
// This code is contributed by unknown2108
</script>


Output: 

3

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments