Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of parallelograms in a plane

Count of parallelograms in a plane

Given some points on a plane, which are distinct and no three of them lie on the same line. We need to find number of Parallelograms with the vertices as the given points. Examples:

Input : points[] = {(0, 0), (0, 2), (2, 2), (4, 2), 
                                   (1, 4), (3, 4)}
Output : 2
Two Parallelograms are possible by choosing above
given point as vertices, which are shown in below 
diagram.

We can solve this problem by using a special property of parallelograms that diagonals of a parallelogram intersect each other in the middle. So if we get such a middle point which is middle point of more than one line segment, then we can conclude that a parallelogram exists, more accurately if a middle point occurs x times, then diagonals of possible parallelograms can be chosen in xC2 ways, i.e. there will be x*(x-1)/2 parallelograms corresponding to this particular middle point with a frequency x. So we iterate over all pair of points and we calculate their middle point and increase frequency of middle point by 1. At the end, we count number of parallelograms according to the frequency of each distinct middle point as explained above. As we just need frequency of middle point, division by 2 is ignored while calculating middle point for simplicity. 

CPP




// C++ program to get number of Parallelograms we
// can make by given points of the plane
#include <bits/stdc++.h>
using namespace std;
 
// Returns count of Parallelograms possible
// from given points
int countOfParallelograms(int x[], int y[], int N)
{
    // Map to store frequency of mid points
    map<pair<int, int>, int> cnt;
    for (int i=0; i<N; i++)
    {
        for (int j=i+1; j<N; j++)
        {
            // division by 2 is ignored, to get
            // rid of doubles
            int midX = x[i] + x[j];
            int midY = y[i] + y[j];
 
            // increase the frequency of mid point
            cnt[make_pair(midX, midY)]++;
        }
    }
 
    // Iterating through all mid points
    int res = 0;
    for (auto it = cnt.begin(); it != cnt.end(); it++)
    {
        int freq = it->second;
 
        // Increase the count of Parallelograms by
        // applying function on frequency of mid point
        res += freq*(freq - 1)/2;
    }
 
    return res;
}
 
// Driver code to test above methods
int main()
{
    int x[] = {0, 0, 2, 4, 1, 3};
    int y[] = {0, 2, 2, 2, 4, 4};
    int N = sizeof(x) / sizeof(int);
 
    cout << countOfParallelograms(x, y, N) << endl;
 
    return 0;
}


Java




/*package whatever //do not write package name here */
 
import java.io.*;
import java.util.*;
 
public class GFG {
     
    // Returns count of Parallelograms possible
    // from given points
    public static int countOfParallelograms(int[] x, int[] y, int N)
    {
        // Map to store frequency of mid points
        HashMap<String, Integer> cnt = new HashMap<>();
 
        for (int i=0; i<N; i++)
        {
            for (int j=i+1; j<N; j++)
            {
                // division by 2 is ignored, to get
                // rid of doubles
                int midX = x[i] + x[j];
                int midY = y[i] + y[j];
 
                // increase the frequency of mid point
                String temp = String.join(" ", String.valueOf(midX), String.valueOf(midY));
                if(cnt.containsKey(temp)){
                    cnt.put(temp, cnt.get(temp) + 1);
                }
                else{
                    cnt.put(temp, 1);
                }
            }
        }
 
        // Iterating through all mid points
        int res = 0;
        for (Map.Entry<String, Integer> it : cnt.entrySet()) {
            int freq = it.getValue();
 
            // Increase the count of Parallelograms by
            // applying function on frequency of mid point
            res = res + freq*(freq - 1)/2;
        }
 
        return res;
    }
     
    public static void main(String[] args) {
        int[] x = {0, 0, 2, 4, 1, 3};
        int[] y = {0, 2, 2, 2, 4, 4};
        int N = x.length;
 
        System.out.println(countOfParallelograms(x, y, N));
    }
}
 
// The code is contributed by Nidhi goel.


Python3




# python program to get number of Parallelograms we
# can make by given points of the plane
 
# Returns count of Parallelograms possible
# from given points
def countOfParallelograms(x, y, N):
     
    # Map to store frequency of mid points
    cnt = {}
     
    for i in range(N):
        for j in range(i+1, N):
             
            # division by 2 is ignored, to get
            # rid of doubles
            midX = x[i] + x[j];
            midY = y[i] + y[j];
 
            # increase the frequency of mid point
            if ((midX, midY) in cnt):
                cnt[(midX, midY)] += 1
            else:
                cnt[(midX, midY)] = 1
 
    # Iterating through all mid points
    res = 0
    for key in cnt:
        freq = cnt[key]
         
        # Increase the count of Parallelograms by
        # applying function on frequency of mid point
        res += freq*(freq - 1)/2
 
    return res
 
# Driver code to test above methods
x = [0, 0, 2, 4, 1, 3]
y = [0, 2, 2, 2, 4, 4]
N = len(x);
 
print(int(countOfParallelograms(x, y, N)))
 
# The code is contributed by Gautam goel.


C#




using System;
using System.Collections.Generic;
 
public class GFG
{
  // Returns count of Parallelograms possible
  // from given points
  public static int CountOfParallelograms(int[] x, int[] y, int N)
  {
 
    // Map to store frequency of mid points
    Dictionary<string, int> cnt = new Dictionary<string, int>();
 
    for (int i = 0; i < N; i++)
    {
      for (int j = i + 1; j < N; j++)
      {
        // division by 2 is ignored, to get
        // rid of doubles
        int midX = x[i] + x[j];
        int midY = y[i] + y[j];
 
        // increase the frequency of mid point
        string temp = string.Join(" ", midX.ToString(), midY.ToString());
        if (cnt.ContainsKey(temp))
        {
          cnt[temp]++;
        }
        else
        {
          cnt.Add(temp, 1);
        }
      }
    }
 
    // Iterating through all mid points
    int res = 0;
    foreach (KeyValuePair<string, int> it in cnt)
    {
      int freq = it.Value;
 
      // Increase the count of Parallelograms by
      // applying function on frequency of mid point
      res += freq * (freq - 1) / 2;
    }
 
    return res;
  }
 
  public static void Main(string[] args)
  {
    int[] x = { 0, 0, 2, 4, 1, 3 };
    int[] y = { 0, 2, 2, 2, 4, 4 };
    int N = x.Length;
 
    Console.WriteLine(CountOfParallelograms(x, y, N));
  }
}


Javascript




// JavaScript program to get number of Parallelograms we
// can make by given points of the plane
 
// Returns count of Parallelograms possible
// from given points
function countOfParallelograms(x, y, N)
{
    // Map to store frequency of mid points
    // map<pair<int, int>, int> cnt;
    let cnt = new Map();
    for (let i=0; i<N; i++)
    {
        for (let j=i+1; j<N; j++)
        {
            // division by 2 is ignored, to get
            // rid of doubles
            let midX = x[i] + x[j];
            let midY = y[i] + y[j];
 
            // increase the frequency of mid point
            let make_pair = [midX, midY];
            if(cnt.has(make_pair.join(''))){
                cnt.set(make_pair.join(''), cnt.get(make_pair.join('')) + 1);
            }
            else{
                cnt.set(make_pair.join(''), 1);
            }
        }
    }
 
    // Iterating through all mid points
    let res = 0;
    for (const [key, value] of cnt)
    {
        let freq = value;
        // Increase the count of Parallelograms by
        // applying function on frequency of mid point
        res = res + Math.floor(freq*(freq - 1)/2);
    }
 
    return res;
}
 
// Driver code to test above methods
let x = [0, 0, 2, 4, 1, 3];
let y = [0, 2, 2, 2, 4, 4];
let N = x.length;
 
console.log(countOfParallelograms(x, y, N));
 
// The code is contributed by Gautam goel (gautamgoel962)


Output

2

Time Complexity: O(n2logn), as we are iterating through two loops up to n and using a map as well which takes logn.
Auxiliary Space: O(n)

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments