Monday, November 25, 2024
Google search engine
HomeData Modelling & AIModify array such that the array does not contain any common divisors...

Modify array such that the array does not contain any common divisors other than 1

Given an array arr[] consisting of N integers and an integer X, the task is to check if it is possible to modify the array such that the array does not contain any common divisor other than 1, by repeatedly dividing any array element of the array by any of its divisor d (d ≤ X). If it is possible to modify the array such that it satisfies the given conditions, then print “Yes”. Otherwise, print “No”.

Examples:

Input: arr[] = {6, 15, 6}, X = 6
Output:
Yes 
2 5 2
Explanation:
Operation 1: Dividing arr[0] by 3 (Since 3 ≤ 6) modifies arr[] to { 2, 15, 6 }.
Operation 2: Dividing arr[1] by 5 (Since 5 ≤ 6) modifies arr[] to { 2, 3, 6 }. 
Therefore, GCD of the array = GCD({2, 3, 6}) = 1, which means that the array has no common divisor other than 1, which is the required condition.

Input: arr[] = {10, 20, 30}, X = 4
Output: No

 

Approach: The idea is to use Euclidean’s GCD to find the GCD of the given array. This gives all the common factors of array elements. By removing all these factors, no common factor remains. Therefore, such an array can be generated. Otherwise, it is not possible to generate such an array.

Follow the steps below to solve the problem:

  1. Initialize a variable, say G, to store the GCD of the given array.
  2. Traverse the array arr[] and compute the GCD and store it in a variable, say G.
  3. Iterate over the range [2, X] and check whether G has a divisor greater than X or not.
  4. If found to be true, then print “No”. Otherwise, print “Yes”.
  5. Otherwise, print the array elements after modifying the array by dividing all elements by G.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if it is possible
// to modify the array such that
// there is no common factor between
// array elements except 1
void checkCommonDivisor(int arr[],
                        int N, int X)
{
    // Stores GCD of the array
    int G = 0;
 
    // Calculate GCD of the array
    for (int i = 0; i < N; i++) {
        G = __gcd(G, arr[i]);
    }
 
    int copy_G = G;
 
    for (int divisor = 2;
         divisor <= X; divisor++) {
 
        // If the current divisor
        // is smaller than X
        while (G % divisor == 0) {
 
            // Divide GCD by the
            // current divisor
            G = G / divisor;
        }
    }
 
    // If possible
    if (G <= X) {
        cout << "Yes\n";
 
        // Print the modified array
        for (int i = 0; i < N; i++)
            cout << arr[i] / copy_G << " ";
        cout << endl;
    }
 
    // Otherwise
    else
        cout << "No";
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 6, 15, 6 }, X = 6;
 
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    checkCommonDivisor(arr, N, X);
}


Java




// Java program for the above approach
class GFG{
 
// Function to check if it is possible
// to modify the array such that
// there is no common factor between
// array elements except 1
static void checkCommonDivisor(int[] arr,
                               int N, int X)
{
     
    // Stores GCD of the array
    int G = 0;
 
    // Calculate GCD of the array
    for(int i = 0; i < N; i++)
    {
        G = gcd(G, arr[i]);
    }
 
    int copy_G = G;
 
    for(int divisor = 2;
            divisor <= X;
            divisor++)
    {
 
        // If the current divisor
        // is smaller than X
        while (G % divisor == 0)
        {
             
            // Divide GCD by the
            // current divisor
            G = G / divisor;
        }
    }
 
    // If possible
    if (G <= X)
    {
        System.out.println("Yes");
 
        // Print the modified array
        for(int i = 0; i < N; i++)
            System.out.print((arr[i] / copy_G) + " ");
             
        System.out.println();
    }
 
    // Otherwise
    else
        System.out.println("No");
}
 
// Calculating gcd
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
         
    return gcd(b, a % b);
}
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = { 6, 15, 6 };
    int X = 6;
 
    // Size of the array
    int N = arr.length;
 
    checkCommonDivisor(arr, N, X);
}
}
 
// This code is contributed by user_qa7r


Python3




# Python3 program for the above approach
import math
 
# Function to check if it is possible
# to modify the array such that
# there is no common factor between
# array elements except 1
def checkCommonDivisor(arr, N, X):
 
    # Stores GCD of the array
    G = 0
 
    # Calculate GCD of the array
    for i in range(N):
        G = math.gcd(G, arr[i])
 
    copy_G = G
 
    for divisor in range(2, X + 1):
 
        # If the current divisor
        # is smaller than X
        while (G % divisor == 0):
 
            # Divide GCD by the
            # current divisor
            G = G // divisor
 
    # If possible
    if (G <= X):
        print("Yes")
 
        # Print the modified array
        for i in range(N):
            print(arr[i] // copy_G, end = " ")
             
        print()
 
    # Otherwise
    else:
        print("No")
 
# Driver Code
if __name__ == "__main__":
 
    # Given array
    arr = [6, 15, 6]
    X = 6
 
    # Size of the array
    N = len(arr)
    checkCommonDivisor(arr, N, X)
 
# This code is contributed by ukasp


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
static int GCD(int a, int b)
{
    return b == 0 ? a : GCD(b, a % b);
}
  
// Function to check if it is possible
// to modify the array such that
// there is no common factor between
// array elements except 1
static void checkCommonDivisor(int []arr,
                               int N, int X)
{
     
    // Stores GCD of the array
    int G = 0;
 
    // Calculate GCD of the array
    for(int i = 0; i < N; i++)
    {
        G = GCD(G, arr[i]);
    }
 
    int copy_G = G;
 
    for(int divisor = 2;
            divisor <= X;
            divisor++)
    {
         
        // If the current divisor
        // is smaller than X
        while (G % divisor == 0)
        {
             
            // Divide GCD by the
            // current divisor
            G = G / divisor;
        }
    }
 
    // If possible
    if (G <= X)
    {
        Console.WriteLine("Yes");
 
        // Print the modified array
        for(int i = 0; i < N; i++)
            Console.Write(arr[i] / copy_G + " ");
             
        Console.Write("\n");
    }
 
    // Otherwise
    else
        Console.WriteLine("No");
}
 
// Driver Code
public static void Main()
{
     
    // Given array
    int []arr = { 6, 15, 6 };
    int X = 6;
 
    // Size of the array
    int N = arr.Length;
 
    checkCommonDivisor(arr, N, X);
}
}
 
// This code is contributed by bgangwar59


Javascript




<script>
// javascript program for the above approach   
// Function to check if it is possible
    // to modify the array such that
    // there is no common factor between
    // array elements except 1
    function checkCommonDivisor(arr , N , X) {
 
        // Stores GCD of the array
        var G = 0;
 
        // Calculate GCD of the array
        for (i = 0; i < N; i++) {
            G = gcd(G, arr[i]);
        }
 
        var copy_G = G;
 
        for (divisor = 2; divisor <= X; divisor++) {
 
            // If the current divisor
            // is smaller than X
            while (G % divisor == 0) {
 
                // Divide GCD by the
                // current divisor
                G = G / divisor;
            }
        }
 
        // If possible
        if (G <= X) {
            document.write("Yes<br/>");
 
            // Print the modified array
            for (i = 0; i < N; i++)
                document.write((arr[i] / copy_G) + " ");
 
            document.write();
        }
 
        // Otherwise
        else
            document.write("No");
    }
 
    // Calculating gcd
    function gcd(a , b) {
        if (b == 0)
            return a;
 
        return gcd(b, a % b);
    }
 
    // Driver Code
     
        var arr = [ 6, 15, 6 ];
        var X = 6;
 
        // Size of the array
        var N = arr.length;
 
        checkCommonDivisor(arr, N, X);
 
// This code is contributed by todaysgaurav
</script>


Output: 

Yes
2 5 2

 

Time Complexity: O(N * logN)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments