Given a range L to R, the task is to find the maximum possible value of GCD(X, Y) such that X and Y belongs to the given range, i.e. L ? X < Y ? R.
Examples:
Input: L = 101, R = 139
Output:
34
Explanation:
For X = 102 and Y = 136, the GCD of x and y is 34, which is the maximum possible.Input: L = 8, R = 14
Output:
7
Naive Approach: Every pair that can be formed from L to R, can be iterated over using two nested loops and the maximum GCD can be found.
Time Complexity: O((R-L)2Log(R))
Auxiliary Space: O(1)
Efficient Approach: Follow the below steps to solve the problem:
- Let the maximum GCD be Z, therefore, X and Y are both multiples of Z. Conversely if there are two or more multiples of Z in the segment [L, R], then (X, Y) can be chosen such that GCD(x, y) is maximum by choosing consecutive multiples of Z in [L, R].
- Iterate from R to 1 and find whether any of them has at least two multiples in the range [L, R]
- The multiples of Z between L and R can be calculated using the following formula:
- Number of Multiples of Z in [L, R] = Number of multiples of Z in [1, R] – Number of Multiples of Z in [1, L-1]
- This can be written as :
- No. of Multiples of Z in [L, R] = floor(R/Z) – floor((L-1)/Z)
- We can further optimize this by limiting the iteration from R/2 to 1 as the greatest possible GCD is R/2 (with multiples R/2 and R)
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate GCD int GCD( int a, int b) { if (b == 0) return a; return GCD(b, a % b); } // Function to calculate // maximum GCD in a range int maxGCDInRange( int L, int R) { // Variable to store the answer int ans = 1; for ( int Z = R/2; Z >= 1; Z--) { // If Z has two multiples in [L, R] if ((R / Z) - ((L - 1) / Z) > 1) { // Update ans ans = Z; break ; } } // Return the value return ans; } // Driver code int main() { // Input int L = 102; int R = 139; // Function Call cout << maxGCDInRange(L, R); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Function to calculate GCD public static int GCD( int a, int b) { if (b == 0 ) return a; return GCD(b, a % b); } // Function to calculate // maximum GCD in a range public static int maxGCDInRange( int L, int R) { // Variable to store the answer int ans = 1 ; for ( int Z = R/ 2 ; Z >= 1 ; Z--) { // If Z has two multiples in [L, R] if ((R / Z) - ((L - 1 ) / Z) > 1 ) { // Update ans ans = Z; break ; } } // Return the value return ans; } // Driver code public static void main(String[] args) { // Input int L = 102 ; int R = 139 ; // Function Call System.out.println(maxGCDInRange(L, R)); } // This code is contributed by Potta Lokesh |
Python3
# Python3 program for the above approach # Function to calculate GCD def GCD(a, b): if (b = = 0 ): return a return GCD(b, a % b) # Function to calculate # maximum GCD in a range def maxGCDInRange(L, R): # Variable to store the answer ans = 1 for Z in range (R / / 2 , 1 , - 1 ): # If Z has two multiples in [L, R] if (((R / / Z) - ((L - 1 ) / / Z )) > 1 ): # Update ans ans = Z break # Return the value return ans # Driver code # Input L = 102 R = 139 # Function Call print (maxGCDInRange(L, R)) # This code is contributed by SoumikMondal |
C#
// C# program for the above approach using System; class GFG{ // Function to calculate GCD public static int GCD( int a, int b) { if (b == 0) return a; return GCD(b, a % b); } // Function to calculate // maximum GCD in a range public static int maxGCDInRange( int L, int R) { // Variable to store the answer int ans = 1; for ( int Z = R/2; Z >= 1; Z--) { // If Z has two multiples in [L, R] if ((R / Z) - ((L - 1) / Z) > 1) { // Update ans ans = Z; break ; } } // Return the value return ans; } // Driver code public static void Main() { // Input int L = 102; int R = 139; // Function Call Console.Write(maxGCDInRange(L, R)); } } // This code is contributed by rishavmahato348 |
Javascript
<script> // JavaScript program for the above approach // Function to calculate GCD function GCD( a, b) { if (b == 0) return a; return GCD(b, a % b); } // Function to calculate // maximum GCD in a range function maxGCDInRange(L, R) { // Variable to store the answer let ans = 1; for (let Z = parseInt((R / 2)); Z >= 1; Z--) { // If Z has two multiples in [L, R] if (parseInt((R / Z)) - parseInt((L - 1) / Z ) > 1) { // Update ans ans = Z; break ; } } // Return the value return ans; } // Driver code // Input let L = 102; let R = 139; // Function Call document.write(maxGCDInRange(L, R)); // This code is contributed by Potta Lokesh </script> |
34
Time Complexity: O(R)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!