Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMaximum sum of Bitwise XOR of elements with their respective positions in...

Maximum sum of Bitwise XOR of elements with their respective positions in a permutation of size N

Given a positive integer N, the task for any permutation of size N having elements over the range [0, N – 1], is to calculate the sum of Bitwise XOR of all elements with their respective position.

For Example: For the permutation {3, 4, 2, 1, 0}, sum = (0^3 + 1^4 + 2^2 + 3^1 + 4^0) = 2.

Examples:

Input: N = 3
Output: 6
Explanation: For the permutations {1, 2, 0} and {2, 0, 1}, the sum is 6.

Input: N = 2
Output: 2

Approach: To solve this problem, the idea is to recursion to generate all possible permutations of the integers [0, N – 1] and calculate the score for each one of them and then find the maximum score among all the permutations formed.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to calculate the score
int calcScr(vector<int>arr){
 
  // Stores the possible score for
  // the current permutation
  int ans = 0;
 
  // Traverse the permutation array
  for(int i = 0; i < arr.size(); i++)
    ans += (i ^ arr[i]);
 
  // Return the final score
  return ans;
}
 
// Function to generate all the possible
// permutation and get the max score
int getMax(vector<int> arr, int ans, vector<bool> chosen, int N)
{
 
  // If arr[] length is equal to N
  // process the permutation
  if (arr.size() == N){
    ans = max(ans, calcScr(arr));
    return ans;
 
  }
 
  // Generating the permutations
  for (int i = 0; i < N; i++)
  {
 
    // If the current element is
    // chosen
    if(chosen[i])
      continue;
 
    // Mark the current element
    // as true
    chosen[i] = true;
    arr.push_back(i);
 
    // Recursively call for next
    // possible permutation
    ans = getMax(arr, ans, chosen, N);
 
    // Backtracking
    chosen[i] = false;
    arr.pop_back();
  }
 
  // Return the ans
  return ans;
}
 
// Driver Code
int main()
{
 
  int N = 2;
 
  // Stores the permutation
  vector<int> arr;
 
  // To display the result
  int ans = -1;
  vector<bool>chosen(N,false);
  ans = getMax(arr, ans, chosen, N);
 
  cout << ans << endl;
}
 
// This code is contributed by bgangwar59.


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to calculate the score
static int calcScr(ArrayList<Integer>arr)
{
 
  // Stores the possible score for
  // the current permutation
  int ans = 0;
 
  // Traverse the permutation array
  for(int i = 0; i < arr.size(); i++)
    ans += (i ^ arr.get(i));
 
  // Return the final score
  return ans;
}
 
// Function to generate all the possible
// permutation and get the max score
static int getMax(ArrayList<Integer> arr, int ans, ArrayList<Boolean> chosen, int N)
{
 
  // If arr[] length is equal to N
  // process the permutation
  if (arr.size() == N)
  {
    ans = Math.max(ans, calcScr(arr));
    return ans;
 
  }
 
  // Generating the permutations
  for (int i = 0; i < N; i++)
  {
 
    // If the current element is
    // chosen
    if(chosen.get(i))
      continue;
 
    // Mark the current element
    // as true
    chosen.set(i, true);
    arr.add(i);
 
    // Recursively call for next
    // possible permutation
    ans = getMax(arr, ans, chosen, N);
 
    // Backtracking
    chosen.set(i, false);
    arr.remove(arr.size()-1);
  }
 
  // Return the ans
  return ans;
}
 
// Driver Code
public static void main(String[] args)
{
 
  int N = 2;
 
  // Stores the permutation
  ArrayList<Integer> arr = new ArrayList<Integer>();
 
  // To display the result
  int ans = -1;
  ArrayList<Boolean> chosen = new ArrayList<Boolean>(Collections.nCopies(N, false));
  ans = getMax(arr, ans, chosen, N);
 
  System.out.print(ans +"\n");
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python program for the above approach
 
# Function to generate all the possible
# permutation and get the max score
def getMax(arr, ans, chosen, N):
 
    # If arr[] length is equal to N
    # process the permutation
    if len(arr) == N:
        ans = max(ans, calcScr(arr))
        return ans
 
    # Generating the permutations
    for i in range(N):
       
        # If the current element is
        # chosen
        if chosen[i]:
            continue
             
        # Mark the current element
        # as true
        chosen[i] = True
        arr.append(i)
         
        # Recursively call for next
        # possible permutation
        ans = getMax(arr, ans, chosen, N)
         
        # Backtracking
        chosen[i] = False
        arr.pop()
         
    # Return the ans
    return ans
 
# Function to calculate the score
def calcScr(arr):
     
    # Stores the possible score for
    # the current permutation
    ans = 0
     
    # Traverse the permutation array
    for i in range(len(arr)):
        ans += (i ^ arr[i])
         
    # Return the final score
    return ans
 
 
# Driver Code
N = 2
 
# Stores the permutation
arr = []
 
# To display the result
ans = -1
 
chosen = [False for i in range(N)]
 
ans = getMax(arr, ans, chosen, N)
 
print(ans)


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG
{
 
  // Function to calculate the score
  static int calcScr(List<int>arr)
  {
 
    // Stores the possible score for
    // the current permutation
    int ans = 0;
 
    // Traverse the permutation array
    for(int i = 0; i < arr.Count; i++)
      ans += (i ^ arr[i]);
 
    // Return the readonly score
    return ans;
  }
 
  // Function to generate all the possible
  // permutation and get the max score
  static int getMax(List<int> arr, int ans, List<Boolean> chosen, int N)
  {
 
    // If []arr length is equal to N
    // process the permutation
    if (arr.Count == N)
    {
      ans = Math.Max(ans, calcScr(arr));
      return ans;
 
    }
 
    // Generating the permutations
    for (int i = 0; i < N; i++)
    {
 
      // If the current element is
      // chosen
      if(chosen[i])
        continue;
 
      // Mark the current element
      // as true
      chosen[i] = true;
      arr.Add(i);
 
      // Recursively call for next
      // possible permutation
      ans = getMax(arr, ans, chosen, N);
 
      // Backtracking
      chosen[i] = false;
      arr.Remove(arr.Count-1);
    }
 
    // Return the ans
    return ans;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
 
    int N = 2;
 
    // Stores the permutation
    List<int> arr = new List<int>();
 
    // To display the result
    int ans = -1;
    List<bool> chosen = new List<bool>(N);
    for(int i = 0; i < N; i++)
      chosen.Add(false);
    ans = getMax(arr, ans, chosen, N);
 
    Console.Write(ans +"\n");
  }
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// JavaScript program for the above approach
 
 
// Function to calculate the score
function calcScr(arr) {
 
    // Stores the possible score for
    // the current permutation
    let ans = 0;
 
    // Traverse the permutation array
    for (let i = 0; i < arr.length; i++)
        ans += (i ^ arr[i]);
 
    // Return the final score
    return ans;
}
 
// Function to generate all the possible
// permutation and get the max score
function getMax(arr, ans, chosen, N) {
 
    // If arr[] length is equal to N
    // process the permutation
    if (arr.length == N) {
        ans = Math.max(ans, calcScr(arr));
        return ans;
 
    }
 
    // Generating the permutations
    for (let i = 0; i < N; i++) {
 
        // If the current element is
        // chosen
        if (chosen[i])
            continue;
 
        // Mark the current element
        // as true
        chosen[i] = true;
        arr.push(i);
 
        // Recursively call for next
        // possible permutation
        ans = getMax(arr, ans, chosen, N);
 
        // Backtracking
        chosen[i] = false;
        arr.pop();
    }
 
    // Return the ans
    return ans;
}
 
// Driver Code
 
 
let N = 2;
 
// Stores the permutation
let arr = [];
 
// To display the result
let ans = -1;
let chosen = new Array(N).fill(false);
ans = getMax(arr, ans, chosen, N);
 
document.write(ans + "<br>");
 
 
// This code is contributed by gfgking
 
</script>


Output: 

2

 

Time Complexity: O(N*N!)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments