Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISum of Bitwise XOR of elements of an array with all elements...

Sum of Bitwise XOR of elements of an array with all elements of another array

Given an array arr[] of size N and an array Q[], the task is to calculate the sum of Bitwise XOR of all elements of the array arr[] with each element of the array q[].

Examples:

Input: arr[ ] = {5, 2, 3}, Q[ ] = {3, 8, 7}
Output: 7 34 11
Explanation:
For Q[0] ( = 3): Sum =  5 ^ 3 + 2 ^ 3 + 3 ^ 3 = 7.
For Q[1] ( = 8): Sum = 5 ^ 8 + 2 ^ 8 + 3 ^ 8 = 34.
For Q[2] ( = 7): Sum = 5 ^ 7 + 2 ^ 7 + 3 ^ 7 = 11.

Input: arr[ ] = {2, 3, 4}, Q[ ] = {1, 2}
Output: 10 7

Naive Approach: The simplest approach to solve the problem is to traverse the array Q[] and for each array element, calculate the sum of its Bitwise XOR with all elements of the array arr[]

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach: Follow the steps below to optimize the above approach:

  • Initialize an array count[], of size 32. to store the count of set bits at each position of the elements of the array arr[].
  • Traverse the array arr[].
  • Update the array count[] accordingly. In a 32-bit binary representation, if the ith bit is set, increase the count of set bits at that position.
  • Traverse the array Q[] and for each array element, perform the following operations:
    • Initialize variables, say sum = 0, to store the required sum of Bitwise XOR .
    • Iterate over each bit positions of the current element.
    • If current bit is set, add count of elements with ith bit not set * 2i to sum.
    • Otherwise, add count[i] *  2i.
    • Finally, print the value of sum.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate sum of Bitwise
// XOR of elements of arr[] with k
int xorSumOfArray(int arr[], int n, int k, int count[])
{
 
    // Initialize sum to be zero
    int sum = 0;
    int p = 1;
 
    // Iterate over each set bit
    for (int i = 0; i < 31; i++) {
 
        // Stores contribution of
        // i-th bet to the sum
        int val = 0;
 
        // If the i-th bit is set
        if ((k & (1 << i)) != 0) {
 
            // Stores count of elements
            // whose i-th bit is not set
            int not_set = n - count[i];
 
            // Update value
            val = ((not_set)*p);
        }
        else {
 
            // Update value
            val = (count[i] * p);
        }
 
        // Add value to sum
        sum += val;
 
        // Move to the next
        // power of two
        p = (p * 2);
    }
 
    return sum;
}
 
void sumOfXors(int arr[], int n, int queries[], int q)
{
 
    // Stores the count of elements
    // whose i-th bit is set
    int count[32];
 
    // Initialize count to 0
    // for all positions
    memset(count, 0, sizeof(count));
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // Iterate over each bit
        for (int j = 0; j < 31; j++) {
 
            // If the i-th bit is set
            if (arr[i] & (1 << j))
 
                // Increase count
                count[j]++;
        }
    }
 
    for (int i = 0; i < q; i++) {
        int k = queries[i];
        cout << xorSumOfArray(arr, n, k, count) << " ";
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 2, 3 };
    int queries[] = { 3, 8, 7 };
 
    int n = sizeof(arr) / sizeof(int);
    int q = sizeof(queries) / sizeof(int);
 
    sumOfXors(arr, n, queries, q);
 
    return 0;
}


Java




// Java Program for the above approach
import java.util.Arrays;
 
class GFG{
 
// Function to calculate sum of Bitwise
// XOR of elements of arr[] with k
static int xorSumOfArray(int arr[], int n,
                         int k, int count[])
{
     
    // Initialize sum to be zero
    int sum = 0;
    int p = 1;
 
    // Iterate over each set bit
    for(int i = 0; i < 31; i++)
    {
         
        // Stores contribution of
        // i-th bet to the sum
        int val = 0;
 
        // If the i-th bit is set
        if ((k & (1 << i)) != 0)
        {
             
            // Stores count of elements
            // whose i-th bit is not set
            int not_set = n - count[i];
 
            // Update value
            val = ((not_set)*p);
        }
        else
        {
             
            // Update value
            val = (count[i] * p);
        }
 
        // Add value to sum
        sum += val;
 
        // Move to the next
        // power of two
        p = (p * 2);
    }
    return sum;
}
 
static void sumOfXors(int arr[], int n,
                      int queries[], int q)
{
     
    // Stores the count of elements
    // whose i-th bit is set
    int []count = new int[32];
 
    // Initialize count to 0
    // for all positions
    Arrays.fill(count,0);
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // Iterate over each bit
        for(int j = 0; j < 31; j++)
        {
             
            // If the i-th bit is set
            if  ((arr[i] & (1 << j)) != 0)
 
                // Increase count
                count[j]++;
        }
    }
 
    for(int i = 0; i < q; i++)
    {
        int k = queries[i];
        System.out.print(
            xorSumOfArray(arr, n, k, count) + " ");
    }
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 5, 2, 3 };
    int queries[] = { 3, 8, 7 };
    int n = arr.length;
    int q = queries.length;
 
    sumOfXors(arr, n, queries, q);
}
}
 
// This code is contributed by SoumikMondal


Python3




# Python3 Program for the above approach
 
# Function to calculate sum of Bitwise
# XOR of elements of arr[] with k
def xorSumOfArray(arr, n, k, count):
     
    # Initialize sum to be zero
    sum = 0
    p = 1
 
    # Iterate over each set bit
    for i in range(31):
         
        # Stores contribution of
        # i-th bet to the sum
        val = 0
 
        # If the i-th bit is set
        if ((k & (1 << i)) != 0):
             
            # Stores count of elements
            # whose i-th bit is not set
            not_set = n - count[i]
 
            # Update value
            val = ((not_set)*p)
 
        else:
             
            # Update value
            val = (count[i] * p)
 
        # Add value to sum
        sum += val
 
        # Move to the next
        # power of two
        p = (p * 2)
 
    return sum
 
def sumOfXors(arr, n, queries, q):
     
    # Stores the count of elements
    # whose i-th bit is set
    count = [0 for i in range(32)]
 
    # Traverse the array
    for i in range(n):
         
        # Iterate over each bit
        for j in range(31):
             
            # If the i-th bit is set
            if (arr[i] & (1 << j)):
                 
                # Increase count
                count[j] += 1
 
    for i in range(q):
        k = queries[i]
         
        print(xorSumOfArray(arr, n, k, count), end = " ")
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 5, 2, 3 ]
    queries = [ 3, 8, 7 ]
    n = len(arr)
    q = len(queries)
     
    sumOfXors(arr, n, queries, q)
 
# This code is contributed by SURENDRA_GANGWAR


C#




// C# Program for the above approach
using System;
 
public class GFG{
     
// Function to calculate sum of Bitwise
// XOR of elements of arr[] with k
static int xorSumOfArray(int []arr, int n, int k, int []count)
{
 
    // Initialize sum to be zero
    int sum = 0;
    int p = 1;
 
    // Iterate over each set bit
    for (int i = 0; i < 31; i++) {
 
        // Stores contribution of
        // i-th bet to the sum
        int val = 0;
 
        // If the i-th bit is set
        if ((k & (1 << i)) != 0) {
 
            // Stores count of elements
            // whose i-th bit is not set
            int not_set = n - count[i];
 
            // Update value
            val = ((not_set)*p);
        }
        else {
 
            // Update value
            val = (count[i] * p);
        }
 
        // Add value to sum
        sum += val;
 
        // Move to the next
        // power of two
        p = (p * 2);
    }
 
    return sum;
}
 
static void sumOfXors(int []arr, int n, int []queries, int q)
{
 
    // Stores the count of elements
    // whose i-th bit is set
    int []count = new int[32];
 
    // Initialize count to 0
    // for all positions
     
    for(int i = 0; i < 32; i++)
        count[i] = 0;
         
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // Iterate over each bit
        for (int j = 0; j < 31; j++) {
 
            // If the i-th bit is set
            if ((arr[i] & (1 << j)) != 0)
 
                // Increase count
                count[j]++;
        }
    }
 
    for (int i = 0; i < q; i++) {
        int k = queries[i];
        Console.Write(xorSumOfArray(arr, n, k, count) + " ");
    }
}
 
// Driver Code
static public void Main ()
{
    int []arr = { 5, 2, 3 };
    int []queries = { 3, 8, 7 };
 
    int n = arr.Length;
    int q = queries.Length;
 
    sumOfXors(arr, n, queries, q);
}
}
 
// This code is contributed by AnkThon


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to calculate sum of Bitwise
// XOR of elements of arr[] with k
function xorSumOfArray(arr, n, k, count)
{
     
    // Initialize sum to be zero
    var sum = 0;
    var p = 1;
 
    // Iterate over each set bit
    for(var i = 0; i < 31; i++)
    {
         
        // Stores contribution of
        // i-th bet to the sum
        var val = 0;
 
        // If the i-th bit is set
        if ((k & (1 << i)) != 0)
        {
             
            // Stores count of elements
            // whose i-th bit is not set
            var not_set = n - count[i];
 
            // Update value
            val = ((not_set)*p);
        }
        else
        {
             
            // Update value
            val = (count[i] * p);
        }
 
        // Add value to sum
        sum += val;
 
        // Move to the next
        // power of two
        p = (p * 2);
    }
    return sum;
}
 
function sumOfXors(arr, n, queries, q)
{
     
    // Stores the count of elements
    // whose i-th bit is set
    var count = new Array(32);
 
    // Initialize count to 0
    // for all positions
    count.fill(0);
 
    // Traverse the array
    for(var i = 0; i < n; i++)
    {
         
        // Iterate over each bit
        for(var j = 0; j < 31; j++)
        {
             
            // If the i-th bit is set
            if (arr[i] & (1 << j))
 
                // Increase count
                count[j]++;
        }
    }
 
    for(var i = 0; i < q; i++)
    {
        var k = queries[i];
        document.write(xorSumOfArray(
            arr, n, k, count) + " ");
    }
}
 
// Driver code
var arr = [ 5, 2, 3 ];
var queries = [ 3, 8, 7 ];
var n = arr.length;
var q = queries.length;
 
sumOfXors(arr, n, queries, q);
 
// This code is contributed by SoumikMondal
 
</script>


Output: 

7 34 11

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments