Thursday, January 16, 2025
Google search engine
HomeData Modelling & AISum of division of the possible pairs for the given Array

Sum of division of the possible pairs for the given Array

Given an array arr[] of N positive integers. For all the possible pairs (x, y) the task is to find the summation of x/y.
Note: If decimal part of (x/y) is &ge 0.5 then add ceil of (x/y), else add floor of (x/y).
Examples: 
 

Input: arr[] = {1, 2, 3} 
Output: 12 
Explanation: 
All possible pairs with division are: 
(1/1) = 1, (1/2) = 1, (1/3) = 0 
(2/1) = 2, (2/2) = 1, (2/3) = 1 
(3/1) = 3, (3/2) = 2, (3/3) = 1 
Sum = 1 + 1 + 0 + 2 + 1 + 1 + 3 + 2 + 1 = 12.
Input: arr[] = {1, 2, 3, 4} 
Output: 22 
Explanation: 
All possible pairs with division are: 
(1/1) = 1, (1/2) = 1, (1/3) = 0, (1/4) = 0 
(2/1) = 2, (2/2) = 1, (2/3) = 1, (2/4) = 1 
(3/1) = 3, (3/2) = 2, (3/3) = 1, (3/4) = 1 
(4/1) = 4, (4/2) = 2, (4/3) = 1, (4/4) = 1 
Sum = 1 + 1 + 0 + 0 + 2 + 1 + 1 + 1 + 3 + 2 + 1 + 1 + 4 + 2 + 1 + 1 = 22. 
 

 

Naive Approach: The idea is to generate all the possible pairs in the given array and find the summation of (x/y) for each pair (x, y).
Time Complexity: O(N2)
Efficient Approach:
To optimize the above method we have to compute the frequency array where freq[i] denotes the number of occurrences of number i. 
 

  • For any given number X, all the numbers ranging from [0.5X, 1.5X] would result in contributing 1 to the answer when divided by X. Similarly all the numbers ranging from [1.5X, 2.5X] would result in contributing 2 to the answer when divided by X.
  • Generalizing this fact all the numbers ranging from [(n-0.5)X, (n+0.5)X] would result in contributing n to the answer when divided by X.
  • Thus for every number P in the range 1 to N we can get the count of the numbers which lie in the given range [L, R] by just computing a prefix sum of frequency array.
  • For a number P, we need to query on the ranges at most N/P times.

Below is the implementation of the above approach: 
 

C++




// C++ implementation to compute the
// sum of division of all the possible
// pairs for the given array
 
#include <bits/stdc++.h>
#define ll long long
using namespace std;
 
// Function to compute the sum
int func(int arr[], int n)
{
 
    double ans = 0;
    int maxx = 0;
    double freq[100005] = { 0 };
    int temp;
 
    // counting frequency
    // of each term
    // and finding maximum
    // among it
    for (int i = 0; i < n; i++) {
        temp = arr[i];
        freq[temp]++;
        maxx = max(maxx, temp);
    }
 
    // Making cumulative frequency
    for (int i = 1; i <= maxx; i++) {
        freq[i] += freq[i - 1];
    }
 
    for (int i = 1; i <= maxx; i++) {
        if (freq[i]) {
            i = (double)i;
            double j;
            ll value = 0;
 
            // Taking the ceil value
            double cur = ceil(0.5 * i) - 1.0;
 
            for (j = 1.5;; j++) {
                int val = min(maxx, (int)(ceil(i * j) - 1.0));
                int times = (freq[i] - freq[i - 1]), con = j - 0.5;
 
                // nos. in [(n-0.5)X, (n+0.5)X)
                // range will add n to the ans
 
                ans += times * con * (freq[(int)val] - freq[(int)cur]);
                cur = val;
 
                if (val == maxx)
                    break;
            }
        }
    }
 
    // Return the final result
    return (ll)ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << func(arr, n) << endl;
 
    return 0;
}


Java




// Java implementation to compute the
// sum of division of all the possible
// pairs for the given array
class GFG{
 
// Function to compute the sum
static long func(int arr[], int n)
{
    double ans = 0;
    int maxx = 0;
    double freq[] = new double[100005];
    int temp;
 
    // Counting frequency of each term
    // and finding maximum among it
    for(int i = 0; i < n; i++)
    {
       temp = arr[i];
       freq[temp]++;
       maxx = Math.max(maxx, temp);
    }
 
    // Making cumulative frequency
    for(int i = 1; i <= maxx; i++)
    {
       freq[i] += freq[i - 1];
    }
 
    for(int i = 1; i <= maxx; i++)
    {
       if (freq[i] != 0)
       {
           double j;
            
           // Taking the ceil value
           double cur = Math.ceil(0.5 * i) - 1.0;
            
           for(j = 1.5;; j++)
           {
              int val = Math.min(maxx,
                  (int)(Math.ceil(i * j) - 1.0));
              int times = (int)(freq[i] -
                                freq[i - 1]),
                    con = (int)(j - 0.5);
               
              // nos. in [(n-0.5)X, (n+0.5)X)
              // range will add n to the ans
              ans += times * con * (freq[(int)val] -
                                    freq[(int)cur]);
              cur = val;
              
              if (val == maxx)
                  break;
           }
       }
    }
     
    // Return the final result
    return (long)ans;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3 };
    int n = arr.length;
 
    System.out.print(func(arr, n) + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program to compute the sum
# of division of all the possible
# pairs for the given array
from math import *
 
# Function to compute the sum
def func (arr, n):
 
    ans = 0
    maxx = 0
    freq = [0] * 100005
    temp = 0
 
    # Counting frequency of each term
    # and finding maximum among it
    for i in range(n):
        temp = arr[i]
        freq[temp] += 1
        maxx = max(maxx, temp)
 
    # Making cumulative frequency
    for i in range(1, maxx + 1):
        freq[i] += freq[i - 1]
 
    for i in range(1, maxx + 1):
        if (freq[i]):
            value = 0
 
            # Taking the ceil value
            cur = ceil(0.5 * i) - 1.0
 
            j = 1.5
            while (1):
                val = min(maxx, (ceil(i * j) - 1.0))
                times = (freq[i] - freq[i - 1])
                con = j - 0.5
 
                # nos. in [(n-0.5)X , (n+0.5)X)
                # range will add n to the ans
                ans += times * con * (freq[int(val)] -
                                      freq[int(cur)])
                cur = val
 
                if (val == maxx):
                    break
                j += 1
 
    return int(ans)
 
# Driver code
if __name__ == '__main__':
 
    arr = [ 1, 2, 3 ]
    n = len(arr)
 
    print(func(arr, n))
 
# This code is contributed by himanshu77


C#




// C# implementation to compute the
// sum of division of all the possible
// pairs for the given array
using System;
 
class GFG{
 
// Function to compute the sum
static long func(int []arr, int n)
{
    double ans = 0;
    int maxx = 0;
    double []freq = new double[100005];
    int temp;
 
    // Counting frequency of each term
    // and finding maximum among it
    for(int i = 0; i < n; i++)
    {
       temp = arr[i];
       freq[temp]++;
       maxx = Math.Max(maxx, temp);
    }
 
    // Making cumulative frequency
    for(int i = 1; i <= maxx; i++)
    {
       freq[i] += freq[i - 1];
    }
 
    for(int i = 1; i <= maxx; i++)
    {
       if (freq[i] != 0)
       {
           double j;
            
           // Taking the ceil value
           double cur = Math.Ceiling(0.5 * i) - 1.0;
            
           for(j = 1.5;; j++)
           {
              int val = Math.Min(maxx,
                  (int)(Math.Ceiling(i * j) - 1.0));
              int times = (int)(freq[i] -
                                freq[i - 1]),
                    con = (int)(j - 0.5);
                     
              // nos. in [(n-0.5)X, (n+0.5)X)
              // range will add n to the ans
              ans += times * con * (freq[(int)val] -
                                    freq[(int)cur]);
              cur = val;
               
              if (val == maxx)
                  break;
           }
       }
    }
     
    // Return the readonly result
    return (long)ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 3 };
    int n = arr.Length;
 
    Console.Write(func(arr, n) + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// JavaScript implementation to compute the
// sum of division of all the possible
// pairs for the given array
 
// Function to compute the sum
function func(arr, n)
{
    let ans = 0;
    let maxx = 0;
    let freq = Array.from({length: 100005}, (_, i) => 0);
    let temp;
   
    // Counting frequency of each term
    // and finding maximum among it
    for(let i = 0; i < n; i++)
    {
       temp = arr[i];
       freq[temp]++;
       maxx = Math.max(maxx, temp);
    }
   
    // Making cumulative frequency
    for(let i = 1; i <= maxx; i++)
    {
       freq[i] += freq[i - 1];
    }
   
    for(let i = 1; i <= maxx; i++)
    {
       if (freq[i] != 0)
       {
           let j;
              
           // Taking the ceil value
           let cur = Math.ceil(0.5 * i) - 1.0;
              
           for(j = 1.5;; j++)
           {
              let val = Math.min(maxx,
                  (Math.ceil(i * j) - 1.0));
              let times = (freq[i] -
                                freq[i - 1]),
                    con = (j - 0.5);
                 
              // nos. in [(n-0.5)X, (n+0.5)X)
              // range will add n to the ans
              ans += times * con * (freq[val] -
                                    freq[cur]);
              cur = val;
                
              if (val == maxx)
                  break;
           }
       }
    }
       
    // Return the final result
    return ans;
}
   
    
 
// Driver Code
 
     let arr = [ 1, 2, 3 ];
    let n = arr.length;
   
    document.write(func(arr, n));
           
</script>


Output: 

12

 

Time Complexity: O(N * log (N) ), where N represents the size of the given array.
 Auxiliary Space: O(100005), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments