Friday, January 17, 2025
Google search engine
HomeData Modelling & AICount total unset bits in all the numbers from 1 to N

Count total unset bits in all the numbers from 1 to N

Given a positive integer N, the task is to count the total number of unset bits in the binary representation of all the numbers from 1 to N. Note that leading zeroes will not be counted as unset bits.
Examples: 
 

Input: N = 5 
Output:
 

Integer Binary Representation Count of unset bits
1 1 0
2 10 1
3 11 0
4 100 2
5 101 1

0 + 1 + 0 + 2 + 1 = 4
Input: N = 14 
Output: 17 
 

 

Approach: 
 

  1. Iterate the loop from 1 to N.
  2. While number is greater than 0 divide it by 2 and check the remainder.
  3. If remainder is equal to 0 then increase the value of count by 1.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of unset
// bits in the binary representation of
// all the numbers from 1 to n
int countUnsetBits(int n)
{
 
    // To store the count of unset bits
    int cnt = 0;
 
    // For every integer from the range [1, n]
    for (int i = 1; i <= n; i++) {
 
        // A copy of the current integer
        int temp = i;
 
        // Count of unset bits in
        // the current integer
        while (temp) {
 
            // If current bit is unset
            if (temp % 2 == 0)
                cnt++;
 
            temp = temp / 2;
        }
    }
    return cnt;
}
 
// Driver code
int main()
{
    int n = 5;
 
    cout << countUnsetBits(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
    // Function to return the count of unset
    // bits in the binary representation of
    // all the numbers from 1 to n
    static int countUnsetBits(int n)
    {
 
        // To store the count of unset bits
        int cnt = 0;
 
        // For every integer from the range [1, n]
        for (int i = 1; i <= n; i++)
        {
 
            // A copy of the current integer
            int temp = i;
 
            // Count of unset bits in
            // the current integer
            while (temp > 0)
            {
 
                // If current bit is unset
                if (temp % 2 == 0)
                {
                    cnt = cnt + 1;
                }
 
                temp = temp / 2;
            }
        }
        return cnt;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 5;
        System.out.println(countUnsetBits(n));
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
 
# Function to return the count of unset
# bits in the binary representation of
# all the numbers from 1 to n
def countUnsetBits(n) :
 
    # To store the count of unset bits
    cnt = 0;
 
    # For every integer from the range [1, n]
    for i in range(1, n + 1) :
         
        # A copy of the current integer
        temp = i;
 
        # Count of unset bits in
        # the current integer
        while (temp) :
 
            # If current bit is unset
            if (temp % 2 == 0) :
                cnt += 1;
 
            temp = temp // 2;
 
    return cnt;
 
# Driver code
if __name__ == "__main__" :
 
    n = 5;
 
    print(countUnsetBits(n));
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the count of unset
    // bits in the binary representation of
    // all the numbers from 1 to n
    static int countUnsetBits(int n)
    {
     
        // To store the count of unset bits
        int cnt = 0;
     
        // For every integer from the range [1, n]
        for (int i = 1; i <= n; i++)
        {
     
            // A copy of the current integer
            int temp = i;
     
            // Count of unset bits in
            // the current integer
            while (temp > 0)
            {
     
                // If current bit is unset
                if (temp % 2 == 0)
                    cnt = cnt + 1;
     
                temp = temp / 2;
            }
        }
        return cnt;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 5;
        Console.Write(countUnsetBits(n));
    }
}
 
// This code is contributed by Sanjit_Prasad


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of unset
// bits in the binary representation of
// all the numbers from 1 to n
function countUnsetBits(n)
{
 
    // To store the count of unset bits
    var cnt = 0;
 
    // For every integer from the range [1, n]
    for (var i = 1; i <= n; i++) {
 
        // A copy of the current integer
        var temp = i;
         
        // Count of unset bits in
        // the current integer
        while (temp) {
 
            // If current bit is unset
            if (temp % 2 == 0)
                cnt++;
 
            temp = parseInt(temp / 2);
        }
    }
    return cnt;
}
 
// Driver code
var n = 5;
document.write( countUnsetBits(n));
 
</script>


Output: 

4

 

Time Complexity: O(n * log n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments