Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximum string length after choosing strings from given Array with given conditions

Maximum string length after choosing strings from given Array with given conditions

Given an array of string S[] of size N, the task is to find the maximum size of the resultant string formed by adding some strings and following the given condition that If a string of size K is chosen to add in the resultant string then the next K/2 strings cannot be selected to be a part of the resultant array.

 Examples:

Input: S[] = {“well”, “do”, “hi”, “by”}
Output: 6
Explanation: Choose “well” and skip “do” and “hi”(sizeof(“well”)/2) and then choose “by”. So, size will be 6.

Input: s[] = {“neveropen”, “for”, “neveropen”, “is”, “best”}
Output: 9

 

Approach: This problem can be solved using memoization. Follow the steps below:

  • For each string S[i], there are two options i.e. to choose the current string or not.
  • So if the string is chosen, its length, say K will contribute to the length of the resultant array and now, only the strings after K/2 can be chosen.
  • Now if the string is excluded, just move further.
  • Print the answer according to the above observation

Below is the implementation of the above approach

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Recursive function to find the
// maximum length of the resultant string
int maxsum(string S[], int N, int i,
           vector<int>& dp)
{
    // If index gets out of bound return 0
    if (i >= N)
        return 0;
 
    // If value not already computed
    // then compute it
    if (dp[i] == -1) {
 
        // To include the current string
        int op1
            = S[i].size()
              + maxsum(S, N,
                       (i + S[i].size() / 2)
                           + 1,
                       dp);
 
        // To exclude the current string
        int op2 = maxsum(S, N, i + 1, dp);
 
        // Maximum of both the options
        dp[i] = max(op1, op2);
    }
    return dp[i];
}
 
// Driver Code
int main()
{
    string S[] = { "neveropen", "for", "neveropen",
                   "is", "best" };
    int N = sizeof(S) / sizeof(S[0]);
    vector<int> dp(N, -1);
    cout << maxsum(S, N, 0, dp);
    return 0;
}


Java




// Java implementation of the above approach
import java.util.Arrays;
 
class GFG {
 
  // Recursive function to find the
  // maximum length of the resultant string
  static int maxsum(String S[], int N, int i, int[] dp)
  {
 
    // If index gets out of bound return 0
    if (i >= N)
      return 0;
 
    // If value not already computed
    // then compute it
    if (dp[i] == -1) {
 
      // To include the current string
      int op1 = S[i].length()
        + maxsum(S, N,
                 (i + S[i].length() / 2)
                 + 1,
                 dp);
 
      // To exclude the current string
      int op2 = maxsum(S, N, i + 1, dp);
 
      // Maximum of both the options
      dp[i] = Math.max(op1, op2);
    }
    return dp[i];
  }
 
  // Driver Code
  public static void main(String args[]) {
    String S[] = { "neveropen", "for", "neveropen", "is", "best" };
    int N = S.length;
    int[] dp = new int[N];
    Arrays.fill(dp, -1);
    System.out.println(maxsum(S, N, 0, dp));
  }
}
 
// This code is contributed by saurabh_jaiswal.


Python3




# Python implementation of the above approach
 
# Recursive function to find the
# maximum length of the resultant string
def maxsum(S, N, i, dp):
 
    # If index gets out of bound return 0
    if (i >= N):
        return 0
 
    # If value not already computed
    # then compute it
    if (dp[i] == -1):
 
        # To include the current string
        op1 = int(len(S[i]) + maxsum(S, N, (i + len(S[i]) // 2)+1, dp))
 
        # To exclude the current string
        op2 = int(maxsum(S, N, i + 1, dp))
 
        # Maximum of both the options
        dp[i] = max(op1, op2)
 
    return dp[i]
 
# Driver Code
S = ["neveropen", "for", "neveropen", "is", "best"]
N = len(S)
dp = []
for i in range(0, N):
    dp.append(-1)
 
print(maxsum(S, N, 0, dp))
 
# This code is contributed by Taranpreet


C#




// C# implementation of the above approach
using System;
public class GFG
{
 
  // Recursive function to find the
  // maximum length of the resultant string
  static int maxsum(String []S, int N, int i, int[] dp)
  {
 
    // If index gets out of bound return 0
    if (i >= N)
      return 0;
 
    // If value not already computed
    // then compute it
    if (dp[i] == -1) {
 
      // To include the current string
      int op1 = S[i].Length + maxsum(S, N, (i + S[i].Length / 2) + 1, dp);
 
      // To exclude the current string
      int op2 = maxsum(S, N, i + 1, dp);
 
      // Maximum of both the options
      dp[i] = Math.Max(op1, op2);
    }
    return dp[i];
  }
 
  // Driver Code
  public static void Main(String []args)
  {
    String []S = { "neveropen", "for", "neveropen", "is", "best" };
    int N = S.Length;
    int[] dp = new int[N];
    for(int i = 0;i<N;i++)
      dp[i] = -1;
    Console.WriteLine(maxsum(S, N, 0, dp));
  }
}
 
// This code is contributed by umadevi9616


Javascript




<script>
       // JavaScript code for the above approach
 
       // Recursive function to find the
       // maximum length of the resultant string
       function maxsum(S, N, i,
           dp) {
           // If index gets out of bound return 0
           if (i >= N)
               return 0;
 
           // If value not already computed
           // then compute it
           if (dp[i] == -1) {
 
               // To include the current string
               let op1
                   = S[i].length
                   + maxsum(S, N,
                       (i + Math.floor(S[i].length / 2))
                       + 1,
                       dp);
 
               // To exclude the current string
               let op2 = maxsum(S, N, i + 1, dp);
 
               // Maximum of both the options
               dp[i] = Math.max(op1, op2);
           }
           return dp[i];
       }
 
       // Driver Code
 
       let S = ["neveropen", "for", "neveropen",
           "is", "best"];
       let N = S.length;
       let dp = new Array(N).fill(-1)
       document.write(maxsum(S, N, 0, dp));
 
      // This code is contributed by Potta Lokesh
   </script>


 
 

Output: 

9

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memorization(top-down) because memorization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a vector to store the solution of the subproblems.
  • Initialize the table with base cases
  • Fill up the table iteratively
  • Return the final solution

Implementation :

C++




// C++ program for above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Iterative function to find the
// maximum length of the resultant string
int maxsum(string S[], int N)
{
    // create vector to store the computations of
    // subproblems
    vector<int> dp(N + 1);
    dp[N] = 0; // base case
 
    // loop to compute the bigger values
    for (int i = N - 1; i >= 0; i--) {
        int op1 = S[i].size() + dp[i + S[i].size() / 2 + 1];
        int op2 = dp[i + 1];
        // store answer of subproblem
        dp[i] = max(op1, op2);
    }
 
    // return answer
    return dp[0];
}
 
// Driver code
int main()
{
    string S[] = { "neveropen", "for", "neveropen", "is", "best" };
    int N = sizeof(S) / sizeof(S[0]);
    cout << maxsum(S, N) << endl;
    return 0;
}
// this code is contributed by bhardwajji


Java




import java.util.*;
 
class Main {
    // Iterative function to find the maximum length of the
    // resultant string
    static int maxsum(String S[], int N)
    {
        // create array to store the computations of
        // subproblems
        int[] dp = new int[N + 1];
        dp[N] = 0; // base case
 
        // loop to compute the bigger values
        for (int i = N - 1; i >= 0; i--) {
            int j = i + S[i].length() / 2 + 1;
            int op1 = j < N ? S[i].length() + dp[j]
                            : S[i].length();
            int op2 = dp[i + 1];
            // store answer of subproblem
            dp[i] = Math.max(op1, op2);
        }
 
        // return answer
        return dp[0];
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String S[]
            = { "neveropen", "for", "neveropen", "is", "best" };
        int N = S.length;
        System.out.println(maxsum(S, N));
    }
}


Python3




def maxsum(S, N):
    # create list to store the computations of subproblems
    dp = [0] * (N + 1)
    dp[N] = 0  # base case
 
    # loop to compute the bigger values
    for i in range(N - 1, -1, -1):
        op1 = len(S[i]) + dp[min(i + len(S[i]) // 2 + 1, N)]
        op2 = dp[i + 1]
 
        # store answer of subproblem
        dp[i] = max(op1, op2)
 
    # return answer
    return dp[0]
 
 
# Driver code
S = ["neveropen", "for", "neveropen", "is", "best"]
N = len(S)
print(maxsum(S, N))


C#




// C# program for above approach
using System;
using System.Linq;
using System.Collections.Generic;
 
public class Program {
    // Iterative function to find the
    // maximum length of the resultant string
    public static int MaxSum(string[] S, int N)
    {
        // create list to store the computations of
        // subproblems
        List<int> dp = new List<int>(new int[N + 1]);
        dp[N] = 0; // base case
 
        // loop to compute the bigger values
        for (int i = N - 1; i >= 0; i--) {
            int op1 = S[i].Length
                      + (i + S[i].Length / 2 + 1 <= N
                             ? dp[i + S[i].Length / 2 + 1]
                             : 0);
            int op2 = dp[i + 1];
            // store answer of subproblem
            dp[i] = Math.Max(op1, op2);
        }
 
        // return answer
        return dp[0];
    }
 
    // Driver code
    public static void Main()
    {
        string[] S
            = { "neveropen", "for", "neveropen", "is", "best" };
        int N = S.Length;
        Console.WriteLine(MaxSum(S, N));
    }
}
// this code is contributed by chetanbargal


Javascript




function maxsum(S, N) {
    // create array to store the computations of subproblems
    let dp = new Array(N + 1).fill(0);
    dp[N] = 0; // base case
 
    // loop to compute the bigger values
    for (let i = N - 1; i >= 0; i--) {
        let op1 = S[i].length + dp[Math.min(i + Math.floor(S[i].length / 2) + 1, N)];
        let op2 = dp[i + 1];
        // store answer of subproblem
        dp[i] = Math.max(op1, op2);
    }
 
    // return answer
    return dp[0];
}
 
// Driver code
let S = ["neveropen", "for", "neveropen", "is", "best"];
let N = S.length;
console.log(maxsum(S, N));
// This code is contributed by user_dtewbxkn77n


Output :

9

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments