Thursday, January 9, 2025
Google search engine

Geek in a Maze

Geek is in a maze of size N * M. Each cell in the maze is made of either ‘.’ or ‘#’. An empty cell is represented by ‘.’ and an obstacle is represented by ‘#’. The task is to find out how many different empty cells he can pass through If Geek starts at cell (R, C) and avoids the obstacles and he can move in any of the four directions but he can move up at most U times and he can move down at most D times. 

Examples:

Input: N = 3, M = 3, 
R = 1, C = 0
U = 1, D = 1
mat = {{. . .}, {. # .}, {# . .}}
Output: 5
Explanation: Geek can reach 
(1, 0), (0, 0), (0, 1), (0, 2), (1, 2) 

Input: N = 3, M = 4, R = 1, C = 0, U = 1, D = 2 
mat = {{. . .},  {. # .}, {. . .}, {# . .}} 
Output: 10
Explanation: Geek can reach all the 
cells except for the obstacles.

 

Brute Force Approach:

Run a simple DFS on matrix and sum all the answers from all branches. Everytime we make a call up or down we will decrement the value of U and D respectively .

In Our Base condition we will also check if we have already visited that cell or not for that we will make cell by ‘#’ when we visit and while returning for un-visiting it we will again mark it as ‘”.” 

Below is implementation of above approach: 

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count different empty cells 
// he can pass through while avoiding
// the obstacles
int numberOfCells(int n, int m, int r, int c, int u, int d, vector<vector<char> >& mat)
{
    if(r<0 or c<0 or r>=n or c>=m or u<0 or d<0 or mat[r] == '#')
       return 0;
         
       mat[r] = '#';
       //calls
       int up = numberOfCells(n,m,r-1,c,u-1,d,mat);
       int down = numberOfCells(n,m,r+1,c,u,d-1,mat);
       int left = numberOfCells(n,m,r,c-1,u,d,mat);
       int right = numberOfCells(n,m,r,c+1,u,d,mat);
        
       mat[r] = '.';
       return 1 + up + down + left + right;
}
 
// Driver code
int main()
{
    int N = 3, M = 3, R = 1, C = 0;
    int U = 1, D = 1;
    vector<vector<char> > mat = { { '.', '.', '.' },
                                  { '.', '#', '.' },
                                  { '#', '.', '.' } };
 
    // Function call
    cout << numberOfCells(N, M, R, C, U, D, mat);
    return 0;
}


Java




/*package whatever //do not write package name here */
import java.io.*;
class GFG {
 
  // Function to count different empty cells 
  // he can pass through while avoiding
  // the obstacles
  static int numberOfCells(int n, int m, int r, int c,int u, int d, char[][] mat){
    if (r < 0 || c < 0 || r >= n || c >= m || u < 0 || d < 0 || mat[r] == '#')
      return 0;
 
    mat[r] = '#';
 
    // calls
    int up = numberOfCells(n, m, r - 1, c, u - 1, d, mat);
    int down = numberOfCells(n, m, r + 1, c, u, d - 1, mat);
    int left = numberOfCells(n, m, r, c - 1, u, d, mat);
    int right = numberOfCells(n, m, r, c + 1, u, d, mat);
 
    mat[r] = '.';
    return 1 + up + down + left + right;
  }
 
  public static void main (String[] args) {
 
    int N = 3, M = 3, R = 1, C = 0;
    int U = 1, D = 1;
    char[][] mat = { { '.', '.', '.' },
                    { '.', '#', '.' },
                    { '#', '.', '.' } };
 
    // Function call
    System.out.println(numberOfCells(N, M, R, C, U, D, mat));
  }
}
 
// This code is contributed by aadityaburujwale.


Python3




def numberOfCells(n, m, r, c, u, d, mat):
    # print(type(mat[r]))
    if(r<0 or c<0 or r>=n or c>=m or u<0 or d<0 or mat[r] == '#'):
        return 0
          
    mat[r] = '#'
 
    up = numberOfCells(n,m,r-1,c,u-1,d,mat)
    down = numberOfCells(n,m,r+1,c,u,d-1,mat)
    left = numberOfCells(n,m,r,c-1,u,d,mat)
    right = numberOfCells(n,m,r,c+1,u,d,mat)
         
    mat[r] = '.'
    return 1 + up + down + left + right
 
 
 
if __name__ == '__main__':
     
    N,M,R,C,U,D = 3,3,1,0,1,1
     
    mat = [['.','.','.'],['.','#','.'],['#','.','.']]
    print(numberOfCells(N, M, R, C, U, D, mat))
 
 # This code is contributed by Arpit Jain


C#




// C# code to implement the approach
 
using System;
using System.Collections.Generic;
 
class GFG {
    // Function to count different empty cells 
    // he can pass through while avoiding
    // the obstacles
    static int numberOfCells(int n, int m, int r, int c,
                             int u, int d, char[, ] mat)
    {
        if (r < 0 || c < 0 || r >= n || c >= m || u < 0
            || d < 0 || mat[r, c] == '#')
            return 0;
 
        mat[r, c] = '#';
        // calls
        int up
            = numberOfCells(n, m, r - 1, c, u - 1, d, mat);
        int down
            = numberOfCells(n, m, r + 1, c, u, d - 1, mat);
        int left = numberOfCells(n, m, r, c - 1, u, d, mat);
        int right
            = numberOfCells(n, m, r, c + 1, u, d, mat);
 
        mat[r, c] = '.';
        return 1 + up + down + left + right;
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int N = 3, M = 3, R = 1, C = 0;
        int U = 1, D = 1;
        char[, ] mat = { { '.', '.', '.' },
                         { '.', '#', '.' },
                         { '#', '.', '.' } };
 
        // Function call
        Console.WriteLine(
            numberOfCells(N, M, R, C, U, D, mat));
    }
}
 
// This code is contributed by phasing17


Javascript




// JavaScript code to implement the approach
 
 
// Function to count different empty cells 
// he can pass through while avoiding
// the obstacles
function numberOfCells(n, m, r, c, u, d, mat)
{
    if(r<0 || c<0 || r>=n || c>=m || u<00 || d<00 || mat[r] == '#')
       return 0;
         
       //cout<<r<<","<<c<<"\n";
       mat[r] = '#';
       //calls
       let up = numberOfCells(n,m,r-1,c,u-1,d,mat);
       let down = numberOfCells(n,m,r+1,c,u,d-1,mat);
       let left = numberOfCells(n,m,r,c-1,u,d,mat);
       let right = numberOfCells(n,m,r,c+1,u,d,mat);
        
       mat[r] = '.';
       return 1 + up + down + left + right;
}
 
 
// Driver code
let N = 3, M = 3, R = 1, C = 0;
let U = 1, D = 1;
let mat = [ [ '.', '.', '.' ], [ '.', '#', '.' ], [ '#', '.', '.' ] ];
 
// Function call
console.log(numberOfCells(N, M, R, C, U, D, mat));


Output

5

Time Complexity : O(4*(n^m)) since we are making 4 calls for n^m items in a matrix

Space Complexity : O(1) since we are using the same matrix as visited matrix

Efficient Approach: The idea is to solve this problem is based on the following idea:

Keep moving radially in all four directions (up, down, left, right) and keep counting the number of turning taken in moving up and down. If the number of turns left for given upward and downward movements are not 0 then move to up and down and keep counting the empty cells.

Follow the steps mentioned below to implement the idea:

  • Check if the starting point is blocked by an obstacle (#)
    •  If true, return 0.
  • Keep a queue of arrays to store rows, columns, ups, and downs for any cell.
  • Do a BFS traversal:
    • Check if the cell is empty then increment the count variable (say cnt).
    • Check if any up move is left or not.
      • If moves for up is left then move to up and decrement the move count for up and push the current status of the cell in the queue.
    • Check if any down move is left or not.
      • If moves for down is left then move to down and decrement the move count for down and push the current status of the cell in the queue.
  • Finally, return the cnt.

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count different empty cells 
// he can pass through while avoiding
// the obstacles
int numberOfCells(int n, int m, int r,
                  int c, int u, int d,
                  vector<vector<char> >& mat)
{
    // If cell having Obstacle
    if (mat[r] == '#')
        return 0;
 
    queue<vector<int> > que;
    int cnt = 0;
    int i = 0;
    int j = 0;
 
    mat[r] = '#';
    que.push({ r, c, u, d });
 
    // BFS traversal of the matrix
    while (que.size()) {
        auto& f = que.front();
        int rr = f[0];
        int cc = f[1];
        int uu = f[2];
        int dd = f[3];
        que.pop();
 
        ++cnt;
 
        // Move left
        i = rr;
        j = cc - 1;
        if (0 <= j && mat[i][j] == '.') {
 
            // Mark the cell visited
            mat[i][j] = '#';
            que.push({ i, j, uu, dd });
        }
 
        // Move right
        i = rr;
        j = cc + 1;
        if (j < m && mat[i][j] == '.') {
 
            // Mark the cell visited
            mat[i][j] = '#';
            que.push({ i, j, uu, dd });
        }
 
        // Move up
        i = rr - 1;
        j = cc;
        if (0 <= i && mat[i][j] == '.' && uu) {
 
            // Mark the cell visited
            mat[i][j] = '#';
            que.push({ i, j, uu - 1, dd });
        }
 
        // Move down
        i = rr + 1;
        j = cc;
        if (i < n && mat[i][j] == '.' && dd) {
 
            // Mark the cell visited
            mat[i][j] = '#';
            que.push({ i, j, uu, dd - 1 });
        }
    }
 
    // Return the count
    return cnt;
}
 
// Driver code
int main()
{
    int N = 3, M = 3, R = 1, C = 0;
    int U = 1, D = 1;
    vector<vector<char> > mat = { { '.', '.', '.' },
                                  { '.', '#', '.' },
                                  { '#', '.', '.' } };
 
    // Function call
    cout << numberOfCells(N, M, R, C, U, D, mat);
    return 0;
}


Java




import java.util.*;
import java.io.*;
 
// Java program for the above approach
class GFG{
 
    // Function to count different empty cells 
    // he can pass through while avoiding
    // the obstacles
    public static int numberOfCells(int n, int m, int r, int c, int u, int d, ArrayList<ArrayList<Character>> mat)
    {
        // If cell having Obstacle
        if (mat.get(r).get(c) == '#')
            return 0;
 
        Queue<ArrayList<Integer>> que = new ArrayDeque<ArrayList<Integer>>();
        int cnt = 0;
        int i = 0;
        int j = 0;
 
        mat.get(r).set(c, '#');
        que.add(new ArrayList<Integer>(List.of(r, c, u, d)));
 
        // BFS traversal of the matrix
        while (!que.isEmpty()) {
            ArrayList<Integer> f = que.peek();
            int rr = f.get(0);
            int cc = f.get(1);
            int uu = f.get(2);
            int dd = f.get(3);
            que.remove();
 
            ++cnt;
 
            // Move left
            i = rr;
            j = cc - 1;
            if (0 <= j && mat.get(i).get(j) == '.') {
 
                // Mark the cell visited
                mat.get(i).set(j, '#');
                que.add(new ArrayList<Integer>(List.of(i, j, uu, dd)));
            }
 
            // Move right
            i = rr;
            j = cc + 1;
            if (j < m && mat.get(i).get(j) == '.') {
 
                // Mark the cell visited
                mat.get(i).set(j, '#');
                que.add(new ArrayList<Integer>(List.of(i, j, uu, dd)));
            }
 
            // Move up
            i = rr - 1;
            j = cc;
            if (0 <= i && mat.get(i).get(j) == '.' && uu > 0) {
 
                // Mark the cell visited
                mat.get(i).set(j, '#');
                que.add(new ArrayList<Integer>(List.of(i, j, uu-1, dd)));
            }
 
            // Move down
            i = rr + 1;
            j = cc;
            if (i < n && mat.get(i).get(j) == '.' && dd > 0) {
 
                // Mark the cell visited
                mat.get(i).set(j, '#');
                que.add(new ArrayList<Integer>(List.of(i, j, uu, dd-1)));
            }
        }
 
        // Return the count
        return cnt;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int N = 3, M = 3, R = 1, C = 0;
        int U = 1, D = 1;
        ArrayList<ArrayList<Character>> mat = new ArrayList<ArrayList<Character>>(
            List.of(new ArrayList<Character>(
                List.of('.', '.', '.')
            ),
            new ArrayList<Character>(
                List.of('.', '#', '.')
            ),
            new ArrayList<Character>(
                List.of('#', '.', '.')
            ))
        );
 
        // Function call
        System.out.println(numberOfCells(N, M, R, C, U, D, mat));
    }
}
 
// This code is contributed by subhamgoyal2014.


Python3




# Python code to implement the approach
 
# Function to count different empty cells 
# he can pass through while avoiding
# the obstacles
def numberOfCells(n, m, r, c, u, d, mat):
 
    # If cell having Obstacle
    if (mat[r] == '#'):
        return 0;
 
    que = [];
    cnt = 0;
    i = 0;
    j = 0;
 
    mat[r] = '#';
    que.append([ r, c, u, d ]);
 
    # BFS traversal of the matrix
    while (len(que) != 0):
        f = que.pop(0)
        rr = f[0];
        cc = f[1];
        uu = f[2];
        dd = f[3];
 
        cnt += 1;
 
        # Move left
        i = rr;
        j = cc - 1;
        if (0 <= j and mat[i][j] == '.'):
 
            # Mark the cell visited
            mat[i][j] = '#';
            que.append([ i, j, uu, dd ]);
         
 
        # Move right
        i = rr;
        j = cc + 1;
        if (j < m and mat[i][j] == '.') :
 
            # Mark the cell visited
            mat[i][j] = '#';
            que.append([ i, j, uu, dd ]);
         
 
        # Move up
        i = rr - 1;
        j = cc;
        if (0 <= i and mat[i][j] == '.' and uu):
 
            # Mark the cell visited
            mat[i][j] = '#';
            que.append([ i, j, uu - 1, dd ]);
         
 
        # Move down
        i = rr + 1;
        j = cc;
        if (i < n and mat[i][j] == '.' and dd) :
 
            # Mark the cell visited
            mat[i][j] = '#';
            que.append([ i, j, uu, dd - 1 ]);
         
    # Return the count
    return cnt;
 
# Driver code
N = 3
M = 3
R = 1
C = 0;
U = 1
D = 1;
mat = [  [ '.', '.', '.' ], [ '.', '#', '.' ], [ '#', '.', '.' ] ];
 
# Function call
print(numberOfCells(N, M, R, C, U, D, mat));
 
# This code is contributed by phasing17


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
 
class GFG{
 
  // Function to count different empty cells 
  // he can pass through while avoiding
  // the obstacles
  public static int numberOfCells(int n, int m, int r,
                                  int c, int u, int d,
                                  char[, ] mat)
  {
    // If cell having Obstacle
    if (mat[r, c] == '#')
      return 0;
 
    List<int[]> que = new List<int[]> ();
    int cnt = 0;
    int i = 0;
    int j = 0;
 
    mat[r, c] = '#';
    que.Add(new[] {r, c, u, d});
 
    // BFS traversal of the matrix
    while (que.Count != 0) {
      int[]  f = que[0];
      int rr = f[0];
      int cc = f[1];
      int uu = f[2];
      int dd = f[3];
      que.RemoveAt(0);
 
      ++cnt;
 
      // Move left
      i = rr;
      j = cc - 1;
      if (0 <= j && mat[i, j] == '.') {
 
        // Mark the cell visited
        mat[i, j] = '#';
        que.Add(new [] {i, j, uu, dd});
      }
 
      // Move right
      i = rr;
      j = cc + 1;
      if (j < m && mat[i, j] == '.') {
 
        // Mark the cell visited
        mat[i, j] = '#';
        que.Add(new [] {i, j, uu, dd});
      }
 
      // Move up
      i = rr - 1;
      j = cc;
      if (0 <= i && mat[i, j] == '.' && uu > 0) {
 
        // Mark the cell visited
        mat[i, j] = '#';
        que.Add(new [] {i, j, uu-1, dd});
      }
 
      // Move down
      i = rr + 1;
      j = cc;
      if (i < n && mat[i, j] == '.' && dd > 0) {
 
        // Mark the cell visited
        mat[i, j] = '#';
        que.Add(new [] {i, j, uu, dd-1});
      }
    }
 
    // Return the count
    return cnt;
  }
 
  // Driver code
  public static void Main(string[] args)
  {
    int N = 3, M = 3, R = 1, C = 0;
    int U = 1, D = 1;
    char[, ] mat = new char[, ] { { '.', '.', '.' },
                                 { '.', '#', '.' },
                                 { '#', '.', '.' } };
 
    // Function call
    Console.WriteLine(numberOfCells(N, M, R, C, U, D, mat));
  }
}
 
// This code is contributed by phasing17.


Javascript




// JS code to implement the approach
 
// Function to count different empty cells 
// he can pass through while avoiding
// the obstacles
function numberOfCells(n, m, r, c, u, d, mat)
 
{
    // If cell having Obstacle
    if (mat[r] == '#')
        return 0;
 
    let que = [];
    let cnt = 0;
    let i = 0;
    let j = 0;
 
    mat[r] = '#';
    que.push([ r, c, u, d ]);
 
    // BFS traversal of the matrix
    while (que.length != 0) {
        let f = que.shift();
        let rr = f[0];
        let cc = f[1];
        let uu = f[2];
        let dd = f[3];
 
        ++cnt;
 
        // Move left
        i = rr;
        j = cc - 1;
        if (0 <= j && mat[i][j] == '.') {
 
            // Mark the cell visited
            mat[i][j] = '#';
            que.push([ i, j, uu, dd ]);
        }
 
        // Move right
        i = rr;
        j = cc + 1;
        if (j < m && mat[i][j] == '.') {
 
            // Mark the cell visited
            mat[i][j] = '#';
            que.push([ i, j, uu, dd ]);
        }
 
        // Move up
        i = rr - 1;
        j = cc;
        if (0 <= i && mat[i][j] == '.' && uu) {
 
            // Mark the cell visited
            mat[i][j] = '#';
            que.push([ i, j, uu - 1, dd ]);
        }
 
        // Move down
        i = rr + 1;
        j = cc;
        if (i < n && mat[i][j] == '.' && dd) {
 
            // Mark the cell visited
            mat[i][j] = '#';
            que.push([ i, j, uu, dd - 1 ]);
        }
    }
 
    // Return the count
    return cnt;
}
 
// Driver code
let N = 3, M = 3, R = 1, C = 0;
let U = 1, D = 1;
let mat = [
    [ '.', '.', '.' ], [ '.', '#', '.' ], [ '#', '.', '.' ]
];
 
// Function call
console.log(numberOfCells(N, M, R, C, U, D, mat));
 
// This code is contributed by phasing17


Output

5

Time Complexity: O(N * M)
Auxiliary Space: O(N * M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments