Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIFind the super power of a given Number

Find the super power of a given Number

Given an integer n   . The task is to find the superpower from the factorization of n   .
The Superpower is the highest power among the power of primes in the factorisation of a number n.
Examples:  

Input :  n = 32
Output :  5

Input : n = 240
Output : 4

For finding the superpower of any given number n   , we have to complete the factorisation of n, and find out highest power among all of the prime factors.
Note: Using Sieve for the purpose of storing list of primes is useful in terms of optimization.
Algorithm
 

  • Iterate over primes and calculate the factorization of n.
  • For each prime among the stored list of primes and which is also a factor of n, 
    find its power and check it for super power.

Below is the implementation of the above approach: 

C++




// CPP for finding super power of n
#include <bits/stdc++.h>
#define MAX 100000
using namespace std;
 
// global hash for prime
bool prime[100002];
 
// sieve method for storing a list of prime
void SieveOfEratosthenes()
{
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p <= MAX; p++)
        if (prime[p] == true)
            for (int i = p * 2; i <= MAX; i += p)
                prime[i] = false;
}
 
// function to return super power
int superpower(int n)
{
    SieveOfEratosthenes();
    int superPower = 0, factor = 0;
    int i = 2;
    // find the super power
    while (n > 1 && i <= MAX) {
        if (prime[i]) {
            factor = 0;
            while (n % i == 0 && n > 1) {
                factor++;
                n = n / i;
            }
 
            if (superPower < factor)
                superPower = factor;
        }
        i++;
    }
 
    return superPower;
}
 
// Driver program
int main()
{
    int n = 256;
    cout << superpower(n);
    return 0;
}


Java




// Java for finding super power of n
 
class GFG{
static int MAX=100000;
// global hash for prime
static boolean[] prime=new boolean[100002];
 
// sieve method for storing a list of prime
static void SieveOfEratosthenes()
{
 
    for (int p = 2; p * p <= MAX; p++)
        if (prime[p] == false)
            for (int i = p * 2; i <= MAX; i += p)
                prime[i] = true;
}
 
// function to return super power
static int superpower(int n)
{
    SieveOfEratosthenes();
    int superPower = 0, factor = 0;
    int i = 2;
    // find the super power
    while (n > 1 && i <= MAX) {
        if (!prime[i]) {
            factor = 0;
            while (n % i == 0 && n > 1) {
                factor++;
                n = n / i;
            }
 
            if (superPower < factor)
                superPower = factor;
        }
        i++;
    }
 
    return superPower;
}
 
// Driver program
public static void main(String[] args)
{
    int n = 256;
    System.out.println(superpower(n));
}
}
// This code is contributed by mits


Python3




# Python3 for finding super
# power of n
MAX = 100000;
 
# global hash for prime
prime = [True] * 100002;
 
# sieve method for storing
# a list of prime
def SieveOfEratosthenes():
 
    p = 2;
    while(p * p <= MAX):
        if (prime[p] == True):
            i = p * 2;
            while(i <= MAX):
                prime[i] = False;
                i += p;
        p += 1;
 
# function to return super power
def superpower(n):
 
    SieveOfEratosthenes();
    superPower = 0;
    factor = 0;
    i = 2;
     
    # find the super power
    while (n > 1 and i <= MAX):
        if (prime[i]):
            factor = 0;
            while (n % i == 0 and n > 1):
                factor += 1;
                n = int(n / i);
 
            if (superPower < factor):
                superPower = factor;
        i += 1;
 
    return superPower;
 
# Driver Code
n = 256;
print(superpower(n));
 
# This code is contributed by mits


C#




// C# for finding super power of n
 
class GFG
{
static int MAX = 100000;
 
// global hash for prime
static bool[] prime = new bool[100002];
 
// sieve method for storing
// a list of prime
static void SieveOfEratosthenes()
{
 
    for (int p = 2;
             p * p <= MAX; p++)
        if (prime[p] == false)
            for (int i = p * 2;
                     i <= MAX; i += p)
                prime[i] = true;
}
 
// function to return super power
static int superpower(int n)
{
    SieveOfEratosthenes();
    int superPower = 0, factor = 0;
    int i = 2;
     
    // find the super power
    while (n > 1 && i <= MAX)
    {
        if (!prime[i])
        {
            factor = 0;
            while (n % i == 0 && n > 1)
            {
                factor++;
                n = n / i;
            }
 
            if (superPower < factor)
                superPower = factor;
        }
        i++;
    }
 
    return superPower;
}
 
// Driver Code
static void Main()
{
    int n = 256;
    System.Console.WriteLine(superpower(n));
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP for finding super power of n
$MAX = 100000;
 
// global hash for prime
$prime = array_fill(0, 100002, true);
 
// sieve method for storing
// a list of prime
function SieveOfEratosthenes()
{
    global $MAX, $prime;
 
    for ($p = 2; $p * $p <= $MAX; $p++)
        if ($prime[$p] == true)
            for ($i = $p * 2;
                 $i <= $MAX; $i += $p)
                $prime[$i] = false;
}
 
// function to return super power
function superpower($n)
{
    SieveOfEratosthenes();
    global $MAX, $prime;
    $superPower = 0;
    $factor = 0;
    $i = 2;
    // find the super power
    while ($n > 1 && $i <= $MAX)
    {
        if ($prime[$i])
        {
            $factor = 0;
            while ($n % $i == 0 && $n > 1)
            {
                $factor++;
                $n = $n / $i;
            }
 
            if ($superPower < $factor)
                $superPower = $factor;
        }
        $i++;
    }
 
    return $superPower;
}
 
// Driver Code
$n = 256;
echo superpower($n);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript for finding super power of n
var MAX = 100000;
 
// global hash for prime
var prime = Array(100002).fill(true);
 
// sieve method for storing a list of prime
function SieveOfEratosthenes()
{
    for (var p = 2; p * p <= MAX; p++)
        if (prime[p] == true)
            for (var i = p * 2; i <= MAX; i += p)
                prime[i] = false;
}
 
// function to return super power
function superpower(n)
{
    SieveOfEratosthenes();
    var superPower = 0, factor = 0;
    var i = 2;
    // find the super power
    while (n > 1 && i <= MAX) {
        if (prime[i]) {
            factor = 0;
            while (n % i == 0 && n > 1) {
                factor++;
                n = n / i;
            }
 
            if (superPower < factor)
                superPower = factor;
        }
        i++;
    }
 
    return superPower;
}
 
// Driver program
var n = 256;
document.write( superpower(n));
 
</script>


Output: 

8

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments