Given the first two terms of the series as 1 and 6 and all the elements of the series are 2 less than the mean of the number preceding and succeeding it. The task is to print the nth term of the series.
First few terms of the series are:
1, 6, 15, 28, 45, 66, 91, …
Examples:
Input: N = 3
Output: 15
Input: N = 1
Output: 1
Approach: The given series represents odd positioned numbers in the triangular number series. Since the nth triangular number can easily be found by (n * (n + 1) / 2), so for finding the odd numbers we can replace n by (2 * n) – 1 as (2 * n) – 1 will always result in odd numbers i.e. the nth number of the given series will be ((2 * n) – 1) * n.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the nth term // of the given series int oddTriangularNumber( int N) { return (N * ((2 * N) - 1)); } // Driver code int main() { int N = 3; cout << oddTriangularNumber(N); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the nth term // of the given series static int oddTriangularNumber( int N) { return (N * (( 2 * N) - 1 )); } // Driver code public static void main(String[] args) { int N = 3 ; System.out.println(oddTriangularNumber(N)); } } // This code contributed by Rajput-Ji |
Python3
# Python 3 implementation of the approach # Function to return the nth term # of the given series def oddTriangularNumber(N): return (N * (( 2 * N) - 1 )) # Driver code if __name__ = = '__main__' : N = 3 print (oddTriangularNumber(N)) # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; class GFG { // Function to return the nth term // of the given series static int oddTriangularNumber( int N) { return (N * ((2 * N) - 1)); } // Driver code public static void Main(String[] args) { int N = 3; Console.WriteLine(oddTriangularNumber(N)); } } /* This code contributed by PrinciRaj1992 */ |
PHP
<?php // PHP implementation of the approach // Function to return the nth term // of the given series function oddTriangularNumber( $N ) { return ( $N * ((2 * $N ) - 1)); } // Driver code $N = 3; echo oddTriangularNumber( $N ); // This code is contributed by Ryuga ?> |
Javascript
<script> // Javascript implementation of the approach // Function to return the nth term // of the given series function oddTriangularNumber(N) { return (N * ((2 * N) - 1)); } // Driver code let N = 3; document.write(oddTriangularNumber(N)); // This code is contributed by subham348. </script> |
15
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!