Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIPrint all the super diagonal elements of the given square matrix

Print all the super diagonal elements of the given square matrix

Given a square matrix mat[][] of size n * n. The task is to print all the elements which lie on the super-diagonal of the given matrix.
Examples: 
 

Input: mat[][] = { 
{1, 2, 3}, 
{3, 3, 4, }, 
{2, 4, 6}} 
Output: 2 4
Input: mat[][] = { 
{1, 2, 3, 4}, 
{3, 3, 4, 4}, 
{2, 4, 6, 3}, 
{1, 1, 1, 3}} 
Output: 2 4 3 
 

 

Approach: The super-diagonal of a square matrix is the set of elements that lies directly above the elements comprising the main diagonal. As for main diagonal elements, their indexes are like (i = j), for super-diagonal elements their indexes are as j = i + 1 (i denotes row and j denotes column).
Hence elements arr[0][1], arr[1][2], arr[2][3], arr[3][4], …. are the elements of super-diagonal.
Either traverse all elements of matrix and print only those where j = i + 1 which requires O(n2) time complexity or traverse only column from 1 to columnCount – 1 and print elements as arr[column – 1][column].
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
 
// Function to print the super diagonal
// elements of the given matrix
void printSuperDiagonal(int arr[R][C])
{
    for (int i = 1; i < C; i++) {
        cout << arr[i - 1][i] << " ";
    }
}
 
// Driver code
int main()
{
    int arr[R][C] = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
 
    printSuperDiagonal(arr);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
static int R = 4;
static int C = 4;
 
// Function to print the sub diagonal
// elements of the given matrix
static void printSubDiagonal(int arr[][])
{
    for (int i = 1; i < C; i++)
    {
            System.out.print(arr[i-1][i] + " ");
    }
}
 
// Driver code
public static void main (String[] args)
{
 
    int arr[][] = { { 1, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 },
                    { 13, 14, 15, 16 } };
 
    printSubDiagonal(arr);
 
}
}
 
// This code is contributed by mohit kumar 29


Python3




# Python3 implementation of the approach
 
R = 4
C = 4
 
# Function to print the super diagonal
# elements of the given matrix
def printSuperDiagonal(arr) :
 
    for i in range(1, C) :
        print(arr[i - 1][i],end= " ");
 
# Driver code
if __name__ == "__main__" :
     
    arr = [ [ 1, 2, 3, 4 ],
            [5, 6, 7, 8 ],
            [ 9, 10, 11, 12 ],
            [ 13, 14, 15, 16 ]]
    printSuperDiagonal(arr);
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
lass GFG
{
 
    static int R = 4;
    static int C = 4;
 
    // Function to print the sub diagonal
    // elements of the given matrix
    static void printSubDiagonal(int [,]arr)
    {
        for (int i = 1; i < C; i++)
        {
                Console.Write(arr[i-1,i] + " ");
        }
    }
 
    // Driver code
    public static void Main (String[] args)
    {
 
        int [,]arr = { { 1, 2, 3, 4 },
                        { 5, 6, 7, 8 },
                        { 9, 10, 11, 12 },
                        { 13, 14, 15, 16 } };
 
        printSubDiagonal(arr);
    }
}
 
/* This code is contributed by PrinciRaj1992 */


Javascript




<script>
 
// Javascript implementation of the approach
var R = 4
var C = 4
 
// Function to print the super diagonal
// elements of the given matrix
function printSuperDiagonal( arr)
{
    for (var i = 1; i < C; i++) {
        document.write( arr[i - 1][i] + " ");
    }
}
 
// Driver code
var arr = [ [ 1, 2, 3, 4 ],
                  [ 5, 6, 7, 8 ],
                  [ 9, 10, 11, 12 ],
                  [ 13, 14, 15, 16 ] ];
printSuperDiagonal(arr);
 
</script>


Output: 

2 7 12

 

Time complexity: O(C) where C is no of columns of given matrix

Auxiliary space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments