Thursday, January 16, 2025
Google search engine
HomeData Modelling & AIFind a distinct pair (x, y) in given range such that x...

Find a distinct pair (x, y) in given range such that x divides y

Given a range of positive integers from l to r. Find such a pair of integers (x, y) that l <= x, y <= r, x != y and x divide y. 
If there are multiple pairs, you need to find any one of them.

Examples: 

Input : 1 10 
Output : 1 2

Input : 2 4
Output : 2 4

The brute force solution is to traverse through the given range of (l, r) and find the first occurrence where x divides y and x!=y.This solution is feasible if the difference between l and r is small. 
Time Complexity of this solution is O((r-l)*(r-l)).
Following are codes based on brute force solutions. 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
void findpair(int l, int r)
{
    int c = 0;
    for (int i = l; i <= r; i++) {
        for (int j = i + 1; j <= r; j++) {
            if (j % i == 0 && j != i) {
                cout << i << ", " << j;
                c = 1;
                break;
            }
        }
        if (c == 1)
            break;
    }
}
 
int main()
{
    int l = 1, r = 10;
    findpair(l, r);
}


Java




// Java implementation of the approach
class GFG
{
 
static void findpair(int l, int r)
{
    int c = 0;
    for (int i = l; i <= r; i++)
    {
        for (int j = i + 1; j <= r; j++)
        {
            if (j % i == 0 && j != i)
            {
                System.out.println( i +", " + j);
                c = 1;
                break;
            }
        }
        if (c == 1)
            break;
    }
}
 
// Driver code
public static void main(String args[])
{
    int l = 1, r = 10;
    findpair(l, r);
}
}
 
// This code is contributed by Arnab Kundu


Python 3




# Python 3 implementation of the approach
def findpair(l, r):
    c = 0
    for i in range(l, r + 1):
        for j in range(i + 1, r + 1):
            if (j % i == 0 and j != i):
                print( i, ", ", j)
                c = 1
                break
        if (c == 1):
            break
     
# Driver Code
if __name__ == "__main__":
 
    l = 1
    r = 10
    findpair(l, r)
 
# This code is contributed by ita_c


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
static void findpair(int l, int r)
{
    int c = 0;
    for (int i = l; i <= r; i++)
    {
        for (int j = i + 1; j <= r; j++)
        {
            if (j % i == 0 && j != i)
            {
                Console.Write( i + ", " + j);
                c = 1;
                break;
            }
        }
        if (c == 1)
            break;
    }
}
 
// Driver code
static void Main()
{
    int l = 1, r = 10;
    findpair(l, r);
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP implementation of the approach
function findpair($l, $r)
{
    $c = 0;
    for ($i = $l; $i <= $r; $i++)
    {
        for ($j = $i + 1; $j <= $r; $j++)
        {
            if ($j % $i == 0 && $j != $i)
            {
                echo($i . ", " . $j);
                $c = 1;
                break;
            }
        }
        if ($c == 1)
            break;
    }
}
 
// Driver code
$l = 1; $r = 10;
findpair($l, $r);
 
// This code is contributed
// by Code_Mech.
?>


Javascript




<script>
 
// JavaScript implementation of the approach
 
function findpair(l,r)
{
    let c = 0;
    for (let i = l; i <= r; i++)
    {
        for (let j = i + 1; j <= r; j++)
        {
            if (j % i == 0 && j != i)
            {
                document.write( i +", " + j+"<br>");
                c = 1;
                break;
            }
        }
        if (c == 1)
            break;
    }
}
 
// Driver code
let l = 1, r = 10;
findpair(l, r);
 
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

1, 2

 

Efficient Solution: 
The problem can be solved in O(1) time complexity if you find the value of l and 2l.
Explanation: 
1) As we know, the smallest value of y/x you can have is 2 and if any greater value is in the range, then 2 is also in the given range.
2) The difference between x and 2x also increases when you increase the value of x. So l and 2l will be the minimum pair to fall in the given range.
Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the possible pair
void findpair(int l, int r)
{
    // ans1, ans2 store value of x
    // and y respectively
    int ans1 = l;
    int ans2 = 2 * l;
 
    cout << ans1 << ", " << ans2 << endl;
}
 
// Driver Code
int main()
{
    int l = 1, r = 10;
    findpair(l, r);
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the possible pair
static void findpair(int l, int r)
{
    // ans1, ans2 store value of x
    // and y respectively
    int ans1 = l;
    int ans2 = 2 * l;
 
    System.out.println( ans1 + ", " + ans2 );
}
 
// Driver Code
public static void main(String args[])
{
    int l = 1, r = 10;
    findpair(l, r);
}
}
 
// This code is contruibuted by Arnab Kundu


Python3




# Python3 implementation of the approach
 
# Function to return the possible pair
def findpair(l, r):
     
    # ans1, ans2 store value of x
    # and y respectively
    ans1 = l
    ans2 = 2 * l
 
    print(ans1, ", ", ans2)
 
# Driver Code
if __name__ == '__main__':
    l, r = 1, 10
    findpair(l, r)
 
# This code is contributed
# by 29AjayKumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the possible pair
    static void findpair(int l, int r)
    {
        // ans1, ans2 store value of x
        // and y respectively
        int ans1 = l;
        int ans2 = 2 * l;
     
        Console.WriteLine( ans1 + ", " + ans2 );
    }
     
    // Driver Code
    public static void Main()
    {
        int l = 1, r = 10;
        findpair(l, r);
    }
}
 
// This code is contruibuted by Ryuga


PHP




<?php
// PHP implementation of the approach
 
// Function to return the possible pair
function findpair($l, $r)
{
    // ans1, ans2 store value of x
    // and y respectively
    $ans1 = $l;
    $ans2 = 2 * $l;
 
    echo ($ans1 . ", " . $ans2);
}
 
// Driver Code
$l = 1; $r = 10;
findpair($l, $r);
 
// This code contributed by Rajput-Ji
?>


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the possible pair
function findpair(l,r)
{
    // ans1, ans2 store value of x
    // and y respectively
    let ans1 = l;
    let ans2 = 2 * l;
  
    document.write( ans1 + ", " + ans2 );
}
 
// Driver Code
let l = 1, r = 10;
findpair(l, r);
 
 
// This code is contributed by rag2127
</script>


Output: 

1, 2

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments