Thursday, January 16, 2025
Google search engine
HomeData Modelling & AITransform string A into B by deleting characters from ends and reinserting...

Transform string A into B by deleting characters from ends and reinserting at any position

Given two strings A and B that are anagrams of each other, the task is to convert A to B if possible in minimum number of operations. An operation is defined as removing either the first or the last character in A and inserting it back anywhere in the string. 

Examples:

Input: A = “edacb”,  B = “abcde”
Output : 3
Explanation : The three operations are:

  • We can remove “b” and insert it after “a” to get “edabc”
  • We can remove “e” and insert it after “c” to get “dabce”
  • We can remove “d” and insert it after “c” to get “abcde”

Input : A = “xyz”, B = “xyz” 
Output : 0
Explanation : String A is equal to String B so no operation is required.

 

Approach: The approach is based on Dynamic Programming and Longest Common Subsequence (LCS)

Intuition:

  • Instead of forming B from A by moving characters from the ends of A to the interior, we will attempt to form A from B by moving characters from B’s interior to its ends. It should be evident that the problem is equivalent.
  • Now, after doing this reversed operation some number of times, we will have a resulting string B’ that we can split into three parts: 
                                                        B’ = prefix + core + suffix
    where
    • core consists of unmoved characters, and
    • prefix / suffix are characters that have been moved to the beginning or end, respectively.
  • Note that once we have moved a character, it is always suboptimal to move it again.
    Since we are free to choose the order in which we move characters, we should choose to move the characters of prefix/suffix from the inside out. 
    Then, the cost of forming B’ from B in this way is len(prefix) + len(suffix).
  • The core is a subsequence of B : it consists of just the unmoved characters of B, in their original order. Indeed, this works both ways – we can turn any subsequence of B into a core, and arrange the remaining letters arbitrarily around it.
  • Now our problem is to find a way to decompose A into those three parts:
    • minimizing len(prefix) + len(suffix).
    • maximize len(core) (the number of untouched characters).
  • This can be restated as finding the maximum-length substring of A which is a subsequence of B.

Algorithm: This problem can be solved with Dynamic Programming much like the classic LCS (longest common subsequence) problem. See the comments in the code for the precise DP state. The main difference from LCS is that we cannot include dp[i-1][j] in dp[i][j], since that would break the contiguity of the A-substring.

Below is the implementation of the above approach :

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find min operations
int minOperations(string A, string B)
{
    // dp[i][j] = length of longest
    //(contiguous) suffix of A[0..i]
    // that is a subsequence of B[0..j]
    int dp[1001][1001];
 
    // r = maximum value over all
    // dp[i][j] computed so far
    int r = 0;
 
    for (int i = 0; i <= A.size(); ++i) {
        for (int j = 0; j <= B.size(); ++j) {
 
            dp[i][j] = 0;
 
            if (i && j) {
 
                // any suffix of A[0..i]
                // which is a subsequence of B[0..j]
                // is also a subsequence of B[0..j-1]...
                dp[i][j] = dp[i][j - 1];
 
                // or, if last character matches (i.e.
                // A[i-1] == B[j-1]), and then the rest
                // of the suffix is a suffix of
                // A[0..i-1] and a subsequence of B[j-1]
                if (A[i - 1] == B[j - 1]) {
 
                    dp[i][j] = max(
                        dp[i][j],
                        1 + dp[i - 1][j - 1]);
                    r = max(r, dp[i][j]);
                }
            }
        }
    }
 
    // r = the length of the
    // longest (contiguous) substring
    // of A that is a subsequence of B
    return A.size() - r;
}
 
// Driver code
int main()
{
    string A = "edacb";
    string B = "abcde";
    cout << minOperations(A, B);
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
public class GFG {
 
    // Function to find min operations
    static int minOperations(String A, String B)
    {
       
        // dp[i][j] = length of longest
        //(contiguous) suffix of A[0..i]
        // that is a subsequence of B[0..j]
        int[][] dp = new int[1001][1001];
 
        // r = maximum value over all
        // dp[i][j] computed so far
        int r = 0;
 
        for (int i = 0; i <= A.length(); ++i) {
            for (int j = 0; j <= B.length(); ++j) {
 
                dp[i][j] = 0;
 
                if (i > 0 && j > 0) {
 
                    // any suffix of A[0..i]
                    // which is a subsequence of B[0..j]
                    // is also a subsequence of B[0..j-1]...
                    dp[i][j] = dp[i][j - 1];
 
                    // or, if last character matches (i.e.
                    // A[i-1] == B[j-1]), and then the rest
                    // of the suffix is a suffix of
                    // A[0..i-1] and a subsequence of B[j-1]
                    if (A.charAt(i - 1)
                        == B.charAt(j - 1)) {
 
                        dp[i][j] = Math.max(
                            dp[i][j], 1 + dp[i - 1][j - 1]);
                        r = Math.max(r, dp[i][j]);
                    }
                }
            }
        }
 
        // r = the length of the
        // longest (contiguous) substring
        // of A that is a subsequence of B
        return A.length() - r;
    }
 
    // Driver code
    public static void main(String args[])
    {
        String A = "edacb";
        String B = "abcde";
        System.out.println(minOperations(A, B));
    }
}
 
// This code is contributed by Smim Hossain Mondal.


Python3




<script>
 
# python3 implementation of the above approach
 
# Function to find min operations
def minOperations(A, B) :
 
    # dp[i][j] = length of longest
    # (contiguous) suffix of A[0..i]
    # that is a subsequence of B[0..j]
    dp = [[ 0 for _ in range(1001)] for _ in range(1001) ]
 
    # r = maximum value over all
    # dp[i][j] computed so far
    r = 0
 
    for i in range(0, len(A) + 1) :
        for j in range(0, len(B) + 1) :
 
            dp[i][j] = 0
 
            if (i and j) :
 
                # any suffix of A[0..i]
                # which is a subsequence of B[0..j]
                # is also a subsequence of B[0..j-1]...
                dp[i][j] = dp[i][j - 1]
 
                # or, if last character matches (i.e.
                # A[i-1] == B[j-1]), and then the rest
                # of the suffix is a suffix of
                # A[0..i-1] and a subsequence of B[j-1]
                if (A[i - 1] == B[j - 1]) :
 
                    dp[i][j] = max(
                        dp[i][j],
                        1 + dp[i - 1][j - 1])
                    r = max(r, dp[i][j])
                 
 
    # r = the length of the
    # longest (contiguous) substring
    # of A that is a subsequence of B
    return len(A) - r
 
 
# Driver code
if __name__ == "__main__" :
 
    A = "edacb"
    B = "abcde"
    print(minOperations(A, B))
     
    # This code is contributed by rakeshsahni


C#




// C# implementation of the above approach
using System;
class GFG {
 
  // Function to find min operations
  static int minOperations(string A, string B)
  {
    // dp[i][j] = length of longest
    //(contiguous) suffix of A[0..i]
    // that is a subsequence of B[0..j]
    int[, ] dp = new int[1001, 1001];
 
    // r = maximum value over all
    // dp[i][j] computed so far
    int r = 0;
 
    for (int i = 0; i <= A.Length; ++i) {
      for (int j = 0; j <= B.Length; ++j) {
 
        dp[i, j] = 0;
 
        if (i > 0 && j > 0) {
 
          // any suffix of A[0..i]
          // which is a subsequence of B[0..j]
          // is also a subsequence of B[0..j-1]...
          dp[i, j] = dp[i, j - 1];
 
          // or, if last character matches (i.e.
          // A[i-1] == B[j-1]), and then the rest
          // of the suffix is a suffix of
          // A[0..i-1] and a subsequence of B[j-1]
          if (A[i - 1] == B[j - 1]) {
 
            dp[i, j] = Math.Max(
              dp[i, j], 1 + dp[i - 1, j - 1]);
            r = Math.Max(r, dp[i, j]);
          }
        }
      }
    }
 
    // r = the length of the
    // longest (contiguous) substring
    // of A that is a subsequence of B
    return A.Length - r;
  }
 
  // Driver code
  public static void Main()
  {
    string A = "edacb";
    string B = "abcde";
    Console.Write(minOperations(A, B));
  }
}
 
// This code is contributed by ukasp.


Javascript




<script>
       // JavaScript code for the above approach
 
 
       // Function to find min operations
       function minOperations(A, B) {
           // dp[i][j] = length of longest
           //(contiguous) suffix of A[0..i]
           // that is a subsequence of B[0..j]
           let dp = new Array(1001);
           for (let i = 0; i < dp.length; i++) {
               dp[i] = new Array(1001)
           }
 
           // r = maximum value over all
           // dp[i][j] computed so far
           let r = 0;
 
           for (let i = 0; i <= A.length; ++i) {
               for (let j = 0; j <= B.length; ++j) {
 
                   dp[i][j] = 0;
 
                   if (i && j) {
 
                       // any suffix of A[0..i]
                       // which is a subsequence of B[0..j]
                       // is also a subsequence of B[0..j-1]...
                       dp[i][j] = dp[i][j - 1];
 
                       // or, if last character matches (i.e.
                       // A[i-1] == B[j-1]), and then the rest
                       // of the suffix is a suffix of
                       // A[0..i-1] and a subsequence of B[j-1]
                       if (A[i - 1] == B[j - 1]) {
 
                           dp[i][j] = Math.max(
                               dp[i][j],
                               1 + dp[i - 1][j - 1]);
                           r = Math.max(r, dp[i][j]);
                       }
                   }
               }
           }
 
           // r = the length of the
           // longest (contiguous) substring
           // of A that is a subsequence of B
           return A.length - r;
       }
 
       // Driver code
 
       let A = "edacb";
       let B = "abcde";
       document.write(minOperations(A, B));
 
 
  // This code is contributed by Potta Lokesh
 
   </script>


 
 

Output

3

Time Complexity : O(N^2)
Auxiliary Space : O(N^2)

Efficient Approach : using array instead of 2d matrix to optimize space complexity 

In previous code we can se that dp[i][j] is dependent upon dp[i-1][j-1] or dp[i][j-1] so we can assume that dp[i-1] is previous row and dp[i] is current row

Implementations Steps :

  • Initialize an integer array dp of size 1001 with all elements as 0.
  • Initialize a variable r to 0.
  • Iterate over the characters of string A, and for each character, iterate over the characters of string B.
  • For each (i, j) pair of indices, update dp[j] as follows:

           a. If A[i] == B[j], then dp[j] = max(dp[j], prev + 1), where prev is the value of dp[j] before the update.
           b. Otherwise, dp[j] = 0.

  • After updating dp[j], update r as max(r, dp[j])
  • The answer is A.size() – r, where A.size() is the length of string A.
  • Return the answer.

Implementation :

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find min operations
int minOperations(string A, string B)
{
    // dp[j] = length of longest
    // (contiguous) suffix of A[0..i]
    // that is a subsequence of B[0..j]
    int dp[1001] = {0};
 
    // r = maximum value over all
    // dp[j] computed so far
    int r = 0;
 
    for (int i = 0; i < A.size(); ++i) {
        int prev = 0;
        for (int j = 0; j < B.size(); ++j) {
            int temp = dp[j];
            dp[j] = max(dp[j], (A[i] == B[j]) ? prev + 1 : 0);
            prev = temp;
            r = max(r, dp[j]);
        }
    }
 
    // r = the length of the
    // longest (contiguous) substring
    // of A that is a subsequence of B
    return A.size() - r;
}
 
// Driver code
int main()
{
    string A = "edacb";
    string B = "abcde";
    cout << minOperations(A, B);
    return 0;
}
 
//this code is contributed by bhardwajji


Java




// Java program for the above approach
public class Main {
    // Function to find min operations
    public static int minOperations(String A, String B) {
        // dp[j] = length of longest
        // (contiguous) suffix of A[0..i]
        // that is a subsequence of B[0..j]
        int[] dp = new int[1001];
 
        // r = maximum value over all
        // dp[j] computed so far
        int r = 0;
 
        for (int i = 0; i < A.length(); ++i) {
            int prev = 0;
            for (int j = 0; j < B.length(); ++j) {
                int temp = dp[j];
                dp[j] = Math.max(dp[j], (A.charAt(i) == B.charAt(j)) ? prev + 1 : 0);
                prev = temp;
                r = Math.max(r, dp[j]);
            }
        }
 
        // r = the length of the
        // longest (contiguous) substring
        // of A that is a subsequence of B
        return A.length() - r;
    }
 
    public static void main(String[] args) {
        String A = "edacb";
        String B = "abcde";
        System.out.println(minOperations(A, B));
    }
}


Python3




# Python program for the above approach
 
# Function to find minimum operations
def minOperations(A, B):
 
    # dp[j] = length of longest
    # (contiguous) suffix of A[0..i]
    # that is a subsequence of B[0..j]
    dp = [0] * 1001
 
    # r = maximum value over all
    # dp[j] computed so far
    r = 0
 
    for i in range(len(A)):
        prev = 0
        for j in range(len(B)):
            temp = dp[j]
            dp[j] = max(dp[j], prev + 1 if A[i] == B[j] else 0)
            prev = temp
            r = max(r, dp[j])
 
    # r = the length of the longest (contiguous) substring
    # of A that is a subsequence of B
    return len(A) - r
 
# Driver code
A = "edacb"
B = "abcde"
print(minOperations(A, B))


C#




using System;
 
class MainClass
{
 
  // Function to find min operations
  public static int minOperations(string A, string B)
  {
 
    // dp[j] = length of longest
    // (contiguous) suffix of A[0..i]
    // that is a subsequence of B[0..j]
    int[] dp = new int[1001];
 
    // r = maximum value over all
    // dp[j] computed so far
    int r = 0;
 
    for (int i = 0; i < A.Length; ++i) {
      int prev = 0;
      for (int j = 0; j < B.Length; ++j) {
        int temp = dp[j];
        dp[j] = Math.Max(dp[j], (A[i] == B[j]) ? prev + 1 : 0);
        prev = temp;
        r = Math.Max(r, dp[j]);
      }
    }
 
    // r = the length of the
    // longest (contiguous) substring
    // of A that is a subsequence of B
    return A.Length - r;
  }
 
  public static void Main(string[] args) {
    string A = "edacb";
    string B = "abcde";
    Console.WriteLine(minOperations(A, B));
  }
}


Javascript




// JavaScript program for the above approach
 
// Function to find min operations
function minOperations(A, B) {
// dp[j] = length of longest
// (contiguous) suffix of A[0..i]
// that is a subsequence of B[0..j]
let dp = new Array(1001).fill(0);
 
// r = maximum value over all
// dp[j] computed so far
let r = 0;
 
for (let i = 0; i < A.length; ++i) {
let prev = 0;
for (let j = 0; j < B.length; ++j) {
let temp = dp[j];
dp[j] = Math.max(dp[j], A[i] == B[j] ? prev + 1 : 0);
prev = temp;
r = Math.max(r, dp[j]);
}
}
 
// r = the length of the
// longest (contiguous) substring
// of A that is a subsequence of B
return A.length - r;
}
 
// Driver code
let A = "edacb";
let B = "abcde";
console.log(minOperations(A, B));


Output

3

Time Complexity : O(N^2)
Auxiliary Space : O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments