Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIMaximize the product of four factors of a Number

Maximize the product of four factors of a Number

Given an integer N, the task is to find the maximum product of A, B, C, D such that below conditions satisfy:

  • N%A ==0 && N%B ==0 && N%C ==0 && N%D ==0.
  • Maximize the product A*B*C*D where N = A+B+C+D.

If no solution exists, print ‘-1’ (without quotes).

Examples: 

Input: N = 8
Output: 16
The divisors of 8 are {1, 2, 4, 8}. 
The maximized product can be formed 
by multiplying 2*2*2*2 = 16 as 2+2+2+2 = 8.

Input: N = 4 
Output: 1
The divisors of 4 are {1, 2, 4}. 
The maximized product can be formed
by multiplying 1*1*1*1 = 1 as 1+1+1+1 =4.

Naive Approach: 

  1. Find out the factors of the given number and store them in a vector named factors in O(sqrt(n)) complexity.
  2. Initialize product = -1 and then we iterate over the factors vector to apply the brute force method to find the maximized product.

Below is the implementation of above approach: 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Declare the vector of factors for storing the
vector<int> factors;
 
// function to find out the factors of a number
void findFactors(int n)
{
    // Loop until the i reaches the sqrt(n)
    for (int i = 1; i * i <= n; i++) {
 
        // Check if i is a factor of n
        if (n % i == 0) {
 
            // if both the factors are same
            // we only push one factor
            if ((n / i) == i)
                factors.push_back(i);
 
            else {
 
                // factor1 is pushed
                factors.push_back(n / i);
 
                // factor2 is pushed
                factors.push_back(i);
            }
        }
    }
}
 
// Function to find the maximum product
int findProduct(int n)
{
    // Initialize the product with -1
    int product = -1;
    int si = factors.size();
    for (int i = 0; i < si; i++)
        for (int j = 0; j < si; j++)
            for (int k = 0; k < si; k++)
                for (int l = 0; l < si; l++) {
 
                    // Find the sum of factors and store it in s
                    int s = factors[i] + factors[j]
                            + factors[k] + factors[l];
 
                    // Compare whether it is equal to the n
                    if (s == n) {
 
                        // product of factors
                        int p = factors[i] * factors[j] * factors[k] * factors[l];
 
                        // Check whether we have a better
                        // p now if yes update
                        if (p > product)
                            product = p;
                    }
                }
 
    return product;
}
 
// Driver code
int main()
{
    int n = 10;
 
    // initializes the vectors with the divisors of n
    findFactors(n);
 
    // prints out the maximised product.
    cout << findProduct(n);
 
    return 0;
}


Java




// Java implementation of above approach
 
import java.util.ArrayList;
import java.util.List;
 
public class GFG {
 
// Declare the ArrayList of factors for storing the
    static List< Integer> factors = new ArrayList<>(10);
 
// function to find out the factors of a number
    static void findFactors(int n) {
        // Loop until the i reaches the sqrt(n)
        for (int i = 1; i * i <= n; i++) {
 
            // Check if i is a factor of n
            if (n % i == 0) {
                // if both the factors are same
                // we only push one factor
                if ((n / i) == i) {
                    factors.add(factors.size(), i);
                } else {
 
                    // factor1 is pushed
                    factors.add(factors.size(), n / i);
 
                    // factor2 is pushed
                    factors.add(factors.size(), i);
                }
            }
        }
    }
 
// Function to find the maximum product
    static int findProduct(int n) {
        // Initialize the product with -1
 
        int product = -1;
        int si = factors.size();
        for (int i = 0; i < si; i++) {
            for (int j = 0; j < si; j++) {
                for (int k = 0; k < si; k++) {
                    for (int l = 0; l < si; l++) {
 
                        // Find the sum of factors and store it in s
                        int s = factors.get(i) + factors.get(j)
                                + factors.get(k) + factors.get(l);
 
                        // Compare whether it is equal to the n
                        if (s == n) {
 
                            // product of factors
                            int p = factors.get(i) * factors.get(j) * factors.get(k) *
                                               factors.get(l);
 
                            // Check whether we have a better
                            // p now if yes update
                            if (p > product) {
                                product = p;
                            }
                        }
                    }
                }
            }
        }
 
        return product;
    }
 
    // Driver Code
    public static void main(String[] args) {
        int n = 10;
 
        // initializes the List with the divisors of n
        findFactors(n);
        // prints out the maximised product.
        System.out.println(findProduct(n));
    }
}


Python3




# Python 3 implementation of above approach
from math import sqrt
 
# Declare the vector of factors
# for storing the
factors = []
 
# function to find out the factors
# of a number
def findFactors(n):
     
    # Loop until the i reaches the sqrt(n)
    for i in range(1, int(sqrt(n)) + 1, 1):
         
        # Check if i is a factor of n
        if (n % i == 0):
             
            # if both the factors are same
            # we only push one factor
            if ((n / i) == i):
                factors.append(i)
 
            else:
                 
                # factor1 is pushed
                factors.append(n / i)
 
                # factor2 is pushed
                factors.append(i)
         
# Function to find the maximum product
def findProduct(n):
     
    # Initialize the product with -1
    product = -1
    si = len(factors)
    for i in range(si):
        for j in range(si):
            for k in range(si):
                for l in range(si):
                     
                    # Find the sum of factors and store it in s
                    s = (factors[i] + factors[j] +
                         factors[k] + factors[l])
 
                    # Compare whether it is equal to the n
                    if (s == n):
                         
                        # product of factors
                        p = (factors[i] * factors[j] *
                             factors[k] * factors[l])
 
                        # Check whether we have a better
                        # p now if yes update
                        if (p > product):
                            product = p
                     
    return product
 
# Driver code
if __name__ == '__main__':
    n = 10
 
    # initializes the vectors with
    # the divisors of n
    findFactors(n)
 
    # prints out the maximised product.
    print(int(findProduct(n)))
 
# This code is contributed by
# Sanjit_Prasad


C#




// C# implementation of above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Declare the ArrayList of factors for storing the
static List<int> factors = new List<int>(10);
 
// function to find out the factors of a number
static void findFactors(int n)
{
    // Loop until the i reaches the sqrt(n)
    for (int i = 1; i * i <= n; i++)
    {
 
        // Check if i is a factor of n
        if (n % i == 0)
        {
            // if both the factors are same
            // we only push one factor
            if ((n / i) == i)
            {
                factors.Insert(factors.Count, i);
            }
            else
            {
 
                // factor1 is pushed
                factors.Insert(factors.Count, n / i);
 
                // factor2 is pushed
                factors.Insert(factors.Count, i);
            }
        }
    }
}
 
// Function to find the maximum product
static int findProduct(int n)
{
     
    // Initialize the product with -1
    int product = -1;
    int si = factors.Count;
    for (int i = 0; i < si; i++)
    {
        for (int j = 0; j < si; j++)
        {
            for (int k = 0; k < si; k++)
            {
                for (int l = 0; l < si; l++)
                {
 
                    // Find the sum of factors and store it in s
                    int s = factors[i] + factors[j] +
                            factors[k] + factors[l];
 
                    // Compare whether it is equal to the n
                    if (s == n)
                    {
 
                        // product of factors
                        int p = factors[i] * factors[j] *
                                factors[k] * factors[l];
 
                        // Check whether we have a better
                        // p now if yes update
                        if (p > product)
                        {
                            product = p;
                        }
                    }
                }
            }
        }
    }
    return product;
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 10;
 
    // initializes the List with the divisors of n
    findFactors(n);
     
    // prints out the maximised product.
    Console.WriteLine(findProduct(n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript implementation of above approach
 
    // Declare the ArrayList of factors for storing the
    let factors = [];
 
    // function to find out the factors of a number
    function findFactors(n)
    {
     
        // Loop until the i reaches the sqrt(n)
        for (let i = 1; i * i <= n; i++)
        {
   
            // Check if i is a factor of n
            if (n % i == 0)
            {
             
                // if both the factors are same
                // we only push one factor
                if ((n / i) == i) {
                    factors.push(i);
                } else {
   
                    // factor1 is pushed
                    factors.push( n / i);
   
                    // factor2 is pushed
                    factors.push( i);
                }
            }
        }
    }
     
    // Function to find the maximum product
    function findProduct(n)
    {
     
           // Initialize the product with -1  
        let product = -1;
        let si = factors.length;
        for (let i = 0; i < si; i++) {
            for (let j = 0; j < si; j++) {
                for (let k = 0; k < si; k++) {
                    for (let l = 0; l < si; l++) {
   
                        // Find the sum of factors and store it in s
                        let s = factors[i] + factors[j]
                                + factors[k] + factors[l];
   
                        // Compare whether it is equal to the n
                        if (s == n) {
   
                            // product of factors
                            let p = factors[i] * factors[j] * factors[k] *
                                               factors[l];
   
                            // Check whether we have a better
                            // p now if yes update
                            if (p > product) {
                                product = p;
                            }
                        }
                    }
                }
            }
        }
   
        return product;
    }
     
    // Driver Code
    let n = 10;
     
    // initializes the List with the divisors of n
    findFactors(n);
     
    // prints out the maximised product.
    document.write(findProduct(n));
     
// This code is contributed by unknown2108
</script>


Output: 

20

 

Time Complexity: O((no. of divisors)^4))

Auxiliary Space: O(sqrt(n))

Better Approach: Complexity can be slightly reduced by removing the 4th loop from the above-mentioned code and instead use a binary search to find the fourth factor. Since binary search only works when the list is sorted. So we need to sort the factors vector so that we can apply binary search to the problem.

Below is the implementation of above approach:

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// We declare the vector of factors for storing the
vector<int> factors;
 
// function to find out the factors of a number
void findFactors(int n)
{
    // we loop until the i reaches the sqrt(n)
    for (int i = 1; i * i <= n; i++) {
 
        // we check if i is a factor of n
        if (n % i == 0) {
 
            // if both the factors are same
            // only push one factor
            if ((n / i) == i) {
                factors.push_back(i);
            }
            else {
 
                // factor1 is pushed
                factors.push_back(n / i);
 
                // factor2 is pushed
                factors.push_back(i);
            }
        }
    }
}
 
int findProduct(int n)
{
    // initialise the product with -1
    int product = -1;
    int si = factors.size();
 
    for (int i = 0; i < si; i++)
        for (int j = 0; j < si; j++)
            for (int k = 0; k < si; k++) {
 
                // we find the sum of factors
                // and store it in s
                int s = factors[i] + factors[j] + factors[k];
 
                // we check whether the fourth
                // factor exists or not
                if (binary_search(factors.begin(), factors.end(), n - s)) {
                    // product of factors
                    int p = factors[i] * factors[j] * factors[k] * (n - s);
 
                    // we check whether we have a better
                    // p now if yes update
                    if (p > product)
                        product = p;
                }
            }
 
    return product;
}
 
// Driver code
int main()
{
    int n = 10;
 
    // initializes the vectors with the divisors of n
    findFactors(n);
 
    // sorts the factors vector
    sort(factors.begin(), factors.end());
 
    // prints out the maximised product.
    cout << findProduct(n);
    return 0;
}


Java




// Java implementation of above approach
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
 
public class GFG {
 
// Declare the ArrayList of factors for storing the
    static List< Integer> factors = new ArrayList<>();
 
// function to find out the factors of a number
    static void findFactors(int n) {
        // we loop until the i reaches the sqrt(n)
        for (int i = 1; i * i <= n; i++) {
 
            // we check if i is a factor of n
            if (n % i == 0) {
 
                // if both the factors are same
                // only push one factor
                if ((n / i) == i) {
                    factors.add(factors.size(), i);
                } else {
 
                    // factor1 is pushed
                    factors.add(factors.size(), n/i);
 
                    // factor2 is pushed
                    factors.add(factors.size(), i);
                }
            }
        }
    }
 
// Function to find the maximum product
    static int findProduct(int n) {
// initialise the product with -1
        int product = -1;
        int si = factors.size();
 
        for (int i = 0; i < si; i++) {
            for (int j = 0; j < si; j++) {
                for (int k = 0; k < si; k++) {
 
                    // we find the sum of factors
                    // and store it in s
                    int s = factors.get(i) + factors.get(j) + factors.get(k);
 
                    // we check whether the fourth
                    // factor exists or not
                    if (Collections.binarySearch(factors, n - s) >= 0) {
                        // product of factors
                        int p = factors.get(i) * factors.get(j) * factors.get(k) * (n - s);
 
                        // we check whether we have a better
                        // p now if yes update
                        if (p > product) {
                            product = p;
                        }
                    }
                }
            }
        }
 
        return product;
    }
 
    // Driver Code
    public static void main(String[] args) {
        int n = 10;
 
        // initializes the vectors with the divisors of n
        findFactors(n);
 
        // sorts the factors vector
        Collections.sort(factors);
 
        // prints out the maximised product.
        System.out.println(findProduct(n));
    }
}


Python3




# Python3 implementation of above approach
 
# We declare the vector of factors for storing the
factors = []
 
# function to find out the factors of a number
def findFactors(n):
     
    # we loop until the i reaches the sqrt(n)
    for i in range(1, n + 1):
        if i * i > n:
            break
 
        # we check if i is a factor of n
        if (n % i == 0):
 
            # if both the factors are same
            # only push one factor
            if ((n / i) == i):
                factors.append(i)
            else:
 
                # factor1 is pushed
                factors.append(n // i)
 
                # factor2 is pushed
                factors.append(i)
 
def findProduct(n):
     
    # initialise the product with -1
    product = -1
    si = len(factors)
 
    for i in range(si):
        for j in range(si):
            for k in range(si):
 
                # we find the sum of factors
                # and store it in s
                s = factors[i] + factors[j] + factors[k]
 
                # we check whether the fourth
                # factor exists or not
                if ((n - s) in factors):
                     
                    # product of factors
                    p = factors[i] * factors[j] * \
                        factors[k] * (n - s)
 
                    # we check whether we have a better
                    # p now if yes update
                    if (p > product):
                        product = p
 
    return product
 
# Driver code
n = 10
 
# initializes the vectors
# with the divisors of n
findFactors(n)
 
# sorts the factors vector
factors = sorted(factors)
 
# prints out the maximized product.
print(findProduct(n))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of above approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
// Declare the ArrayList of factors for storing the
static List< int> factors = new List<int>();
 
// function to find out the factors of a number
static void findFactors(int n)
{
    // we loop until the i reaches the sqrt(n)
    for (int i = 1; i * i <= n; i++)
    {
 
        // we check if i is a factor of n
        if (n % i == 0)
        {
 
            // if both the factors are same
            // only push one factor
            if ((n / i) == i)
            {
                factors.Insert(factors.Count, i);
            }
            else
            {
 
                // factor1 is pushed
                factors.Insert(factors.Count, n / i);
 
                // factor2 is pushed
                factors.Insert(factors.Count, i);
            }
        }
    }
}
 
// Function to find the maximum product
static int findProduct(int n)
{
     
    // initialise the product with -1
    int product = -1;
    int si = factors.Count;
 
    for (int i = 0; i < si; i++)
    {
        for (int j = 0; j < si; j++)
        {
            for (int k = 0; k < si; k++)
            {
 
                // we find the sum of factors
                // and store it in s
                int s = factors[i] + factors[j] + factors[k];
 
                // we check whether the fourth
                // factor exists or not
                if (factors.BinarySearch(n - s) >= 0)
                {
                    // product of factors
                    int p = factors[i] * factors[j] *
                            factors[k] * (n - s);
 
                    // we check whether we have a better
                    // p now if yes update
                    if (p > product)
                    {
                        product = p;
                    }
                }
            }
        }
    }
    return product;
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 10;
 
    // initializes the vectors with the divisors of n
    findFactors(n);
 
    // sorts the factors vector
    factors.Sort();
 
    // prints out the maximised product.
    Console.WriteLine(findProduct(n));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript implementation of above approach
 
    // Declare the ArrayList of factors for storing the
    let factors = [];
 
    // function to find out the factors of a number
    function findFactors(n)
    {
        // we loop until the i reaches the sqrt(n)
        for (let i = 1; i * i <= n; i++) {
  
            // we check if i is a factor of n
            if (n % i == 0) {
  
                // if both the factors are same
                // only push one factor
                if ((n / i) == i) {
                    factors.push( i);
                } else {
  
                    // factor1 is pushed
                    factors.push( n/i);
  
                    // factor2 is pushed
                    factors.push( i);
                }
            }
        }
    }
     
    // Function to find the maximum product
    function findProduct(n)
    {
        let product = -1;
        let si = factors.length;
  
        for (let i = 0; i < si; i++) {
            for (let j = 0; j < si; j++) {
                for (let k = 0; k < si; k++) {
  
                    // we find the sum of factors
                    // and store it in s
                    let s = factors[i] + factors[j] +
                    factors[k];
  
                    // we check whether the fourth
                    // factor exists or not
                    if ( factors.includes(n-s)) {
                        // product of factors
                        let p = factors[i] * factors[j] *
                        factors[k] * (n - s);
  
                        // we check whether we have a better
                        // p now if yes update
                        if (p > product) {
                            product = p;
                        }
                    }
                }
            }
        }
  
        return product;
    }
     
    // Driver Code
     
    let n = 10;
    // initializes the vectors with the divisors of n
    findFactors(n);
 
    // sorts the factors vector
    factors.sort(function(a,b){return a-b;});
 
    // prints out the maximised product.
    document.write(findProduct(n));
     
 
// This code is contributed by patel2127
 
</script>


Output: 

20

 

Time Complexity: O((no.of divisors)^3 * log(no. of divisors))

Efficient Approach: This is the returned maximized product upto first 40 natural numbers.

1-> -1, 2-> -1, 3-> -1, 4-> 1 , 5-> -1 , 6-> 4, 7-> -1, 8-> 16, 9-> -1, 10-> 20, 11-> -1 12-> 81, 13-> -1, 14-> -1 , 15-> -1, 16-> 256, 17-> -1 18-> 324, 19-> -1, 20-> 625, 21-> -1, 22-> -1, 23-> -1, 24-> 1296, 25-> -1, 26-> -1 27-> -1, 28-> 2401, 29-> -1, 30-> 2500, 31-> -1, 32-> 4096, 33-> -1, 34-> -1 35-> -1, 36-> 6561, 37-> -1, 38-> -1, 39-> -1, 40-> 10000, 41-> -1, 42-> 9604

If we closely try to observe the pattern we can find out the pattern is somewhat common in some cases. 

For example: 

  1. For every odd number there is no solution, hence returns -1.
  2. There is no solution for numbers less than 4.
  3. For every number which is divisible by 4 the solution is always in the form of (n/4)^4. 
    • the numbers like 4 which has factors {1, 2, 4} solution is 1 and (4/4)^4 = 1.
    • the numbers like 8 which has factors {1, 2, 4, 8} solution is 16 ans (8/4)^4 = 16.
  4. For every number which is divisible by 6 the solution is always in the form of (n/3)^2 * (n/6)^2 
    • the numbers like 6 which has factors {1, 2, 3, 6} solution is 4 and (6/3)^2 * (6/6)^2 = 4.
    • the numbers like 18 which has factors {1, 2, 3, 6, 9, 18} solution is 324 and (18/3)^2 * (18/6)^2 = 324.
  5. For every number which is divisible by 10 the solution is always in the form of (n/10) * (n/5)^2 * (n/2) 
    • the numbers like 10 which has factors {1, 2, 5, 10} solution is 20 and (10/10)*(10/5)^2 * (10/2) = 20.
    • the numbers like 20 which has factors {1, 2, 5, 10, 25, 50} solution is 12500 and (50/10)*(50/5)^2 *(50/2) = 12500.
  6. For every other even number there is no solution the numbers like 14 and 22.

Note: We consider the lowest factor which divides the number first and we ignore the next consecutive divisors in order to calculate the max product. For example, 12 is divisible by 4 and 6 both. But we consider the least factor to calculate so we consider 4 as its divisor for calculation of product.

Below is the implementation of above approach: 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// For calculation of a^b
int modExp(int a, int b)
{
    int result = 1;
    while (b > 0) {
        if (b & 1)
            result = result * a;
        a = a * a;
        b /= 2;
    }
 
    return result;
}
 
// Function to check
int check(int num)
{
    // every odd and number less than 3.
    if (num & 1 || num < 3)
        return -1;
 
    // every number divisible by 4.
    else if (num % 4 == 0)
        return modExp(num / 4, 4);
 
    // every number divisible by 6.
    else if (num % 6 == 0)
        return modExp(num / 3, 2) * modExp(num / 6, 2);
 
    // every number divisible by 10.
    else if (num % 10 == 0)
        return modExp(num / 5, 2) * (num / 10) * (num / 2);
 
    // for every even number which is not
    // divisible by above values.
    else
        return -1;
}
 
// Driver code
int main()
{
    int num = 10;
    cout << check(num);
 
    return 0;
}


Java




// Java implementation of above approach
import java.io.*;
import java.util.*;
import java.lang.*;
 
class GFG
{
// For calculation of a^b
static int modExp(int a, int b)
{
    int result = 1;
    while (b > 0)
    {
        if (b == 1)
            result = result * a;
        a = a * a;
        b /= 2;
    }
 
    return result;
}
 
// Function to check
static int check(int num)
{
    // every odd and number less than 3.
    if (num == 1 || num < 3)
        return -1;
 
    // every number divisible by 4.
    else if (num % 4 == 0)
        return modExp(num / 4, 4);
 
    // every number divisible by 6.
    else if (num % 6 == 0)
        return modExp(num / 3, 2) * modExp(num / 6, 2);
 
    // every number divisible by 10.
    else if (num % 10 == 0)
        return modExp(num / 5, 2) * (num / 10) * (num / 2);
 
    // for every even number which is not
    // divisible by above values.
    else
        return -1;
}
 
// Driver code
public static void main(String[] args)
{
    int num = 10;
    System.out.print(check(num));
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


Python3




# Python3 implementation of above approach
 
 
# For calculation of a^b
def modExp( a, b):
 
    result = 1
    while (b > 0):
        if (int(b) & 1):
            result = result * a
        a = a * a
        b /= 2
     
 
    return result
 
 
# Function to check
def check( num):
 
    # every odd and number less than 3.
    if (num & 1 or num < 3):
        return -1
 
    # every number divisible by 4.
    elif (num % 4 == 0):
        return modExp(num / 4, 4)
 
    # every number divisible by 6.
    elif (num % 6 == 0):
        return modExp(num / 3, 2) * modExp(num / 6, 2)
 
    # every number divisible by 10.
    elif (num % 10 == 0):
        return modExp(num / 5, 2) * (num / 10) * (num / 2)
 
    # for every even number which is not
    # divisible by above values.
    else:
        return -1
 
 
# Driver code
if __name__=='__main__':
    num = 10
    print(int(check(num)))
 
# This code is contributed by ash264


C#




// C#  implementation of above approach
using System;
 
public class GFG{
    // For calculation of a^b
static int modExp(int a, int b)
{
    int result = 1;
    while (b > 0)
    {
        if (b == 1)
            result = result * a;
        a = a * a;
        b /= 2;
    }
 
    return result;
}
 
// Function to check
static int check(int num)
{
    // every odd and number less than 3.
    if (num == 1 || num < 3)
        return -1;
 
    // every number divisible by 4.
    else if (num % 4 == 0)
        return modExp(num / 4, 4);
 
    // every number divisible by 6.
    else if (num % 6 == 0)
        return modExp(num / 3, 2) * modExp(num / 6, 2);
 
    // every number divisible by 10.
    else if (num % 10 == 0)
        return modExp(num / 5, 2) * (num / 10) * (num / 2);
 
    // for every even number which is not
    // divisible by above values.
    else
        return -1;
}
 
// Driver code
static public void Main (){
         
    int num = 10;
    Console.WriteLine(check(num));
    }
}


PHP




<?php
// Php implementation of above approach
 
// For calculation of a^b
function modExp($a, $b)
{
    $result = 1;
    while ($b > 0)
    {
        if ($b & 1)
            $result = $result * $a;
        $a = $a * $a;
        $b /= 2;
    }
 
    return $result;
}
 
// Function to check
function check($num)
{
    // every odd and number less than 3.
    if ($num & 1 || $num < 3)
        return -1;
 
    // every number divisible by 4.
    else if ($num % 4 == 0)
        return modExp($num / 4, 4);
 
    // every number divisible by 6.
    else if ($num % 6 == 0)
        return modExp($num / 3, 2) *
               modExp($num / 6, 2);
 
    // every number divisible by 10.
    else if ($num % 10 == 0)
        return modExp($num / 5, 2) *
                     ($num / 10) * ($num / 2);
 
    // for every even number which is not
    // divisible by above values.
    else
        return -1;
}
 
// Driver code
 
$num = 10;
echo check($num);
     
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript




<script>
 
// Javascript implementation of above approach
 
// For calculation of a^b
function modExp(a, b)
{
    let result = 1;
     
    while (b > 0)
    {
        if (b == 1)
            result = result * a;
             
        a = a * a;
        b = Math.floor(b / 2);
    }
    return result;
}
 
// Function to check
function check(num)
{
     
    // every odd and number less than 3.
    if (num == 1 || num < 3)
        return -1;
  
    // Every number divisible by 4.
    else if (num % 4 == 0)
        return modExp(Math.floor(num / 4), 4);
  
    // Every number divisible by 6.
    else if (num % 6 == 0)
        return modExp(Math.floor(num / 3), 2) *
               modExp(Math.floor(num / 6), 2);
  
    // Every number divisible by 10.
    else if (num % 10 == 0)
        return modExp(Math.floor(num / 5), 2) *
                      Math.floor(num / 10) *
                      Math.floor(num / 2);
  
    // For every even number which is not
    // divisible by above values.
    else
        return -1;
}
 
// Driver code
let num = 10;
 
document.write(check(num));
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

20

 

Time Complexity: O(log N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments