Given an array of size N and Q queries, each query consists of L, R, and K(consider 1 based-indexing for L and R). The task is to find an element for each query that occurs consecutively in the subarray [L, R] more than or equal to K times. K will always be greater than floor((R-L+1)/2). If no such element exists, print -1.
Examples:
Input: arr[] = [1, 3, 3, 3, 4]
Q = 1
L = 1, R = 5, K = 3
Output: 3
The element 3 occurs 3 times consecutively in the range [1, 5]Input: arr[] = [3, 2, 1, 1, 2, 2, 2, 2]
Q = 2
L = 2, R = 6, K = 3
L = 3, R = 8, K = 4
Output:
-1
2
Approach: Create two auxiliary arrays left and right of size n. The Left array will store the count of elements from the start that occurs consecutively in the array. The Right array will store count of elements from back that occurs consecutively in the array. Since it is given in the question that k will always be greater than floor((R-L+1)/2). Hence if any such element exists in the given range, it always lies in the index mid. Mathematically, min{ right[mid] + mid – 1, r – 1 }-max{ mid – left[mid] + 1, l – 1} + 1 will give the range of the element in the subarray L-R which lies at the index mid. If the range exceeds or is equal to k, then return the a[mid] element. If it is not then return -1.
Below is the implementation of above approach :
C++
// CPP program to find the element for each // query that occurs consecutively in the // subarray [L, R] more than or equal to K times. #include <bits/stdc++.h> using namespace std; /// Function to find the element for each /// query that occurs consecutively in the /// subarray [L, R] more than or equal to K times. int findElement( int arr[], int left[], int right[], int n, int l, int r, int k) { // find mid point of subarray [L, R] int mid = (l - 1 + r - 1) / 2; // find starting and ending index of range int s = max(mid - left[mid] + 1, l - 1); int e = min(right[mid] + mid - 1, r - 1); int range = e - s + 1; // compare this range with k // if it is greater than or // equal to k, return element if (range >= k) return arr[mid]; // if not then return -1 else return -1; } // function to answer query in range [L, R] int answerQuery( int arr[], int n, int l, int r, int k) { int left[n], right[n]; // store count of elements that occur // consecutively in the array [1, n] int count = 1; for ( int i = 0; i < n - 1; i++) { if (arr[i] == arr[i + 1]) { left[i] = count; count++; } else { left[i] = count; count = 1; } } left[n - 1] = count; // store count of elements that occur // consecutively in the array [n, 1] count = 1; for ( int i = n - 1; i > 0; i--) { if (arr[i] == arr[i - 1]) { right[i] = count; count++; } else { right[i] = count; count = 1; } } right[0] = count; // Function to return the element return findElement(arr, left, right, n, l, r, k); } // Driver Code int main() { int a[] = { 3, 2, 1, 1, 2, 2, 2, 2 }; int n = sizeof (a) / sizeof (a[0]); // 1st query int L = 2, R = 6, k = 3; cout << answerQuery(a, n, L, R, k) << "\n" ; // 2nd query L = 3, R = 8, k = 4; cout << answerQuery(a, n, L, R, k); } |
Java
// Java program to find the element for each // query that occurs consecutively in the // subarray [L, R] more than or equal to K times. import java.util.*; class solution { /// Function to find the element for each /// query that occurs consecutively in the /// subarray [L, R] more than or equal to K times. static int findElement( int [] arr, int [] left, int [] right, int n, int l, int r, int k) { // find mid point of subarray [L, R] int mid = (l - 1 + r - 1 ) / 2 ; // find starting and ending index of range int s = Math.max(mid - left[mid] + 1 , l - 1 ); int e = Math.min(right[mid] + mid - 1 , r - 1 ); int range = e - s + 1 ; // compare this range with k // if it is greater than or // equal to k, return element if (range >= k) return arr[mid]; // if not then return -1 else return - 1 ; } // function to answer query in range [L, R] static int answerQuery( int arr[], int n, int l, int r, int k) { int [] left = new int [n]; int [] right = new int [n]; // store count of elements that occur // consecutively in the array [1, n] int count = 1 ; for ( int i = 0 ; i < n - 1 ; i++) { if (arr[i] == arr[i + 1 ]) { left[i] = count; count++; } else { left[i] = count; count = 1 ; } } left[n - 1 ] = count; // store count of elements that occur // consecutively in the array [n, 1] count = 1 ; for ( int i = n - 1 ; i > 0 ; i--) { if (arr[i] == arr[i - 1 ]) { right[i] = count; count++; } else { right[i] = count; count = 1 ; } } right[ 0 ] = count; // Function to return the element return findElement(arr, left, right, n, l, r, k); } // Driver Code public static void main(String args[]) { int [] a = { 3 , 2 , 1 , 1 , 2 , 2 , 2 , 2 }; int n = a.length; // 1st query int L = 2 , R = 6 , k = 3 ; System.out.println(answerQuery(a, n, L, R, k)); // 2nd query L = 3 ; R = 8 ; k = 4 ; System.out.println(answerQuery(a, n, L, R, k)); } } // This code is contributed by // Shashank_Sharma |
Python3
# Python3 program to find the element for each # query that occurs consecutively in the # subarray [L, R] more than or equal to K times. # Function to find the element for each # query that occurs consecutively in the # subarray [L, R] more than or equal to K times. def findElement(arr, left, right, n, l, r, k): # find mid point of subarray [L, R] mid = (l - 1 + r - 1 ) / / 2 # find starting and ending index of range s = max (mid - left[mid] + 1 , l - 1 ) e = min (right[mid] + mid - 1 , r - 1 ) _range = e - s + 1 # compare this range with k # if it is greater than or # equal to k, return element if _range > = k: return arr[mid] # if not then return -1 else : return - 1 # function to answer query in range [L, R] def answerQuery(arr, n, l, r, k): left, right = [ None ] * n, [ None ] * n # store count of elements that occur # consecutively in the array [1, n] count = 1 for i in range ( 0 , n - 1 ): if arr[i] = = arr[i + 1 ]: left[i] = count count + = 1 else : left[i] = count count = 1 left[n - 1 ] = count # store count of elements that occur # consecutively in the array [n, 1] count = 1 for i in range (n - 1 , 0 , - 1 ): if arr[i] = = arr[i - 1 ]: right[i] = count count + = 1 else : right[i] = count count = 1 right[ 0 ] = count # Function to return the element return findElement(arr, left, right, n, l, r, k) # Driver Code if __name__ = = "__main__" : a = [ 3 , 2 , 1 , 1 , 2 , 2 , 2 , 2 ] n = len (a) # 1st query L, R, k = 2 , 6 , 3 print (answerQuery(a, n, L, R, k)) # 2nd query L, R, k = 3 , 8 , 4 print (answerQuery(a, n, L, R, k)) # This code is contributed by Rituraj Jain |
C#
// C# program to find the element for each // query that occurs consecutively in the // subarray [L, R] more than or equal to K times. using System; class GFG { // Function to find the element for each // query that occurs consecutively in the // subarray [L, R] more than or equal to K times. static int findElement( int [] arr, int [] left, int [] right, int n, int l, int r, int k) { // find mid point of subarray [L, R] int mid = (l - 1 + r - 1) / 2; // find starting and ending index of range int s = Math.Max(mid - left[mid] + 1, l - 1); int e = Math.Min(right[mid] + mid - 1, r - 1); int range = e - s + 1; // compare this range with k // if it is greater than or // equal to k, return element if (range >= k) return arr[mid]; // if not then return -1 else return -1; } // function to answer query in range [L, R] static int answerQuery( int []arr, int n, int l, int r, int k) { int [] left = new int [n]; int [] right = new int [n]; // store count of elements that occur // consecutively in the array [1, n] int count = 1; for ( int i = 0; i < n - 1; i++) { if (arr[i] == arr[i + 1]) { left[i] = count; count++; } else { left[i] = count; count = 1; } } left[n - 1] = count; // store count of elements that occur // consecutively in the array [n, 1] count = 1; for ( int i = n - 1; i > 0; i--) { if (arr[i] == arr[i - 1]) { right[i] = count; count++; } else { right[i] = count; count = 1; } } right[0] = count; // Function to return the element return findElement(arr, left, right, n, l, r, k); } // Driver Code static public void Main () { int [] a = { 3, 2, 1, 1, 2, 2, 2, 2 }; int n = a.Length; // 1st query int L = 2, R = 6, k = 3; Console.WriteLine(answerQuery(a, n, L, R, k)); // 2nd query L = 3; R = 8; k = 4; Console.WriteLine(answerQuery(a, n, L, R, k)); } } // This code is contributed by ajit.. |
Javascript
<script> // Javascript program to find the element for each // query that occurs consecutively in the // subarray [L, R] more than or equal to K times. /// Function to find the element for each /// query that occurs consecutively in the /// subarray [L, R] more than or equal to K times. function findElement(arr, left, right, n, l, r, k) { // find mid point of subarray [L, R] let mid = Math.floor((l - 1 + r - 1) / 2); // find starting and ending index of range let s = Math.max(mid - left[mid] + 1, l - 1); let e = Math.min(right[mid] + mid - 1, r - 1); let range = e - s + 1; // compare this range with k // if it is greater than or // equal to k, return element if (range >= k) return arr[mid]; // if not then return -1 else return -1; } // function to answer query in range [L, R] function answerQuery(arr, n, l, r, k) { let left = new Array(n).fill(0); let right = new Array(n).fill(0); // store count of elements that occur // consecutively in the array [1, n] let count = 1; for (let i = 0; i < n - 1; i++) { if (arr[i] == arr[i + 1]) { left[i] = count; count++; } else { left[i] = count; count = 1; } } left[n - 1] = count; // store count of elements that occur // consecutively in the array [n, 1] count = 1; for (let i = n - 1; i > 0; i--) { if (arr[i] == arr[i - 1]) { right[i] = count; count++; } else { right[i] = count; count = 1; } } right[0] = count; // Function to return the element return findElement(arr, left, right, n, l, r, k); } // driver program let a = [ 3, 2, 1, 1, 2, 2, 2, 2 ]; let n = a.length; // 1st query let L = 2, R = 6, k = 3; document.write(answerQuery(a, n, L, R, k) + "<br/>" ); // 2nd query L = 3; R = 8; k = 4; document.write(answerQuery(a, n, L, R, k)); </script> |
-1 2
Complexity Analysis:
- Time complexity: O(N) to pre-compute the left and right array and O(1) to answer every query.
- Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!