Friday, January 10, 2025
Google search engine
HomeData Modelling & AISort an array in increasing order of GCD of their digits

Sort an array in increasing order of GCD of their digits

Given an array arr[] consisting of N positive integers, the task is to sort the array arr[] according to the increasing order of GCD of digits of each element. If GCD of two or more elements are the same then, sort according to their values.

Examples:

Input: arr[] = {555, 363, 488, 244}
Output: 244 363 488 555
Explanation:
Following the GCD of the digits of each number:

  1. 555: GCD(5, 5, 5) = 5.
  2. 363: GCD(3, 6, 3) = 3.
  3. 488: GCD(4, 8, 8) = 4.
  4. 244: GCD(2, 4, 4) = 2.

After sorting according the given criteria, the order of elements are {244, 363, 488, 555}.

Input: arr[] = {555, 363, 488, 244, 444, 5}
Output: 244 363 444 488 5 555

Approach: The given problem can be solved by using the comparator function with the sort() function. The comparator function is defined as:

  • It takes two arguments at a time and returns true if the GCD of the first argument is less than the second argument.
  • If the GCD value is the same, then it returns true if the first argument is less than the second argument. Otherwise, return false.

Below is the implementation of the above approach:

C++




// C++ program for above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to calculate GCD of two integers
int gcd(int a, int b)
{
     
    // Base case
    if (b == 0)
        return a;
          
    // Recursively calculate GCD
    return gcd(b, a % b);
}
  
// Function to calculate GCD of
// digits of array elements
int keyFunc(int n)
{
    int getGCD = 0;
      
    while (n > 0)
    {
        getGCD = gcd(n % 10, getGCD);
  
        // If at point GCD becomes 1,
        // return it
        if (getGCD == 1)
            return 1;
  
        n = n / 10;
    }
    return getGCD;
}
 
// Comparator function that compares 
// elements according to their gcd value.
bool compare(int o1, int o2)
{
    int x = keyFunc(o1);
    int y = keyFunc(o2);
     
    if(x == y)
    {
        return o1 < o2;
    }
    return x < y;
}
 
// Function to sort an array in according
// to GCD of digits of array elements
void sortArrayByGCD(vector<int>arr)
{
    vector<int>list;
    for(int i : arr)
    {
        list.push_back(i);
    }
      
    // Sort the array according to gcd of
    // digits using comparator function
    sort(list.begin(), list.end(), compare);
     
    // Print the resultant array
    for(int i : list)
    {
        cout << i << " ";
    }
}
  
// Driver code
int main()
{
    vector<int>arr = { 555, 363, 488, 244 };;
    sortArrayByGCD(arr);
}
 
// This code is contributed by nirajgusain5


Java




// Java program for the above approach
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
 
class GFG{
     
// Function to calculate GCD of two integers
static int gcd(int a, int b)
{
     
    // Base case
    if (b == 0)
        return a;
         
    // Recursively calculate GCD
    return gcd(b, a % b);
}
 
// Function to calculate GCD of
// digits of array elements
static int keyFunc(int n)
{
    int getGCD = 0;
     
    while (n > 0)
    {
        getGCD = gcd(n % 10, getGCD);
 
        // If at point GCD becomes 1,
        // return it
        if (getGCD == 1)
            return 1;
 
        n = n / 10;
    }
    return getGCD;
}
 
// Function to sort an array in according
// to GCD of digits of array elements
public static void sortArrayByGCD(int[] arr)
{
    ArrayList<Integer> list = new ArrayList<Integer>();
    for(int i : arr)
    {
        list.add(i);
    }
     
    // Sort the array according to gcd of
    // digits using comparator function
    Collections.sort(list, new Comparator<Integer>()
    {
        @Override
        public int compare(Integer o1, Integer o2)
        {
            int x = keyFunc(o1) - keyFunc(o2);
            if (x == 0)
            {
                if (o1 > o2)
                    x = 1;
                else
                    x = -1;
            }
            return x;
        }
    });
     
    // Print the resultant array
    for(int i : list)
    {
        System.out.print(i + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 555, 363, 488, 244 };
    sortArrayByGCD(arr);
}
}
 
// This code is contributed by abhinavjain194


Python3




# Python3 program for the above approach
 
# Function to calculate
# GCD of two integers
def gcd(a, b):
   
    # Base Case
    if not b:
        return a
       
    # Recursively calculate GCD
    return gcd(b, a % b)
 
# Function to calculate GCD
# of two array elements
def keyFunc(n):
    getGCD = int(str(n)[0])
     
    # Update the getGCD
    for i in str(n):
        getGCD = gcd(getGCD, int(i))
         
    # Return the resultant GCD
    return getGCD
 
# Function to sort an array by
# increasing order of GCD of
# digits of array elements
def sortArrayByGCD(arr):
 
    # Sort the array
    arr.sort()
 
    # Sort the array according to gcd of
    # digits using comparator function
    arr = sorted(arr, key = keyFunc)
 
    # Print the resultant array
    print(*arr)
 
# Driver Code
     
# Given array
arr = [555, 363, 488, 244]
sortArrayByGCD(arr)


C#




using System;
using System.Linq;
 
class GFG
{
  static int Gcd(int a, int b)
  {
    if (b == 0)
      return a;
    return Gcd(b, a % b);
  }
 
  static int KeyFunc(int n)
  {
    int gcd = 0;
    while (n > 0)
    {
      gcd = Gcd(n % 10, gcd);
      if (gcd == 1)
        return 1;
      n /= 10;
    }
    return gcd;
  }
 
  static void SortArrayByGcd(int[] arr)
  {
    var list = arr.ToList();
    list.Sort((o1, o2) =>
              {
                var x = KeyFunc(o1) - KeyFunc(o2);
                if (x == 0)
                {
                  if (o1 > o2)
                    x = 1;
                  else
                    x = -1;
                }
                return x;
              });
    Console.WriteLine(string.Join(" ", list));
  }
 
  static void Main(string[] args)
  {
    int[] arr = { 555, 363, 488, 244 };
    SortArrayByGcd(arr);
  }
}
 
// This code is contributed by aadityaburujwale.


Javascript




<script>
 
// JavaScript program for above approach
 
// Function to calculate GCD of two integers
function gcd(a, b) {
 
    // Base case
    if (b == 0)
        return a;
 
    // Recursively calculate GCD
    return gcd(b, a % b);
}
 
 
// Function to calculate GCD of
// digits of array elements
function keyFunc(n) {
    let getGCD = String(n)[0]
 
    // Update the getGCD
    for (let i = 0; i < n; i++)
        getGCD = gcd(getGCD, i)
 
    // Return the resultant GCD
    return getGCD
}
 
 
// Function to sort an array in according
// to GCD of digits of array elements
function sortArrayByGCD(arr) {
    // Sort the array
    arr.sort()
 
    // Sort the array according to gcd of
    // digits using comparator function
    arr = arr.sort(keyFunc)
 
    // Print the resultant array
    for (let i of arr) {
        document.write(i + " ")
    }
}
 
// Driver code
let arr = [555, 363, 488, 244];
sortArrayByGCD(arr);
 
</script>


Output: 

244 363 488 555

 

Time Complexity: O(N * log N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments