Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AISum of the natural numbers (up to N) whose modulo with K...

Sum of the natural numbers (up to N) whose modulo with K yield R

Given three integers N, K, and R. The task is to calculate the sum of all those numbers from 1 to N which yields remainder R upon division by K.
Examples: 
 

Input: N = 20, K = 4, R = 3 
Output: 55 
3, 7, 11, 15 and 19 are the only numbers that give 3 as the remainder on division with 4. 
3 + 7 + 11 + 15 + 19 = 55
Input: N = 15, K = 13, R = 2 
Output: 17 
 

 

Approach: 
 

  • Initialize sum = 0 and take the modulo of each element from 1 to N with K.
  • If the remainder is equal to R, then update sum = sum + i where i is the current number that gave R as the remainder on dividing by K.
  • Print the value of sum in the end.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the sum
long long int count(int N, int K, int R)
{
    long long int sum = 0;
    for (int i = 1; i <= N; i++) {
 
        // If current number gives R as the
        // remainder on dividing by K
        if (i % K == R)
 
            // Update the sum
            sum += i;
    }
 
    // Return the sum
    return sum;
}
 
// Driver code
int main()
{
    int N = 20, K = 4, R = 3;
    cout << count(N, K, R);
 
    return 0;
}


Java




// Java implementation of the approach
class GfG
{
 
// Function to return the sum
static long count(int N, int K, int R)
{
    long sum = 0;
    for (int i = 1; i <= N; i++)
    {
 
        // If current number gives R as the
        // remainder on dividing by K
        if (i % K == R)
 
            // Update the sum
            sum += i;
    }
 
    // Return the sum
    return sum;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 20, K = 4, R = 3;
    System.out.println(count(N, K, R));
}
}
 
// This code is contributed by
// prerna saini.


Python3




# Python 3 implementation of the approach
 
# Function to return the sum
def count(N, K, R):
    sum = 0
    for i in range(1, N + 1):
         
        # If current number gives R as the
        # remainder on dividing by K
        if (i % K == R):
             
            # Update the sum
            sum += i
 
    # Return the sum
    return sum
 
# Driver code
if __name__ == '__main__':
    N = 20
    K = 4
    R = 3
    print(count(N, K, R))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
class GFG
{
 
// Function to return the sum
static long count(int N, int K, int R)
{
    long sum = 0;
    for (int i = 1; i <= N; i++)
    {
 
        // If current number gives R as the
        // remainder on dividing by K
        if (i % K == R)
 
            // Update the sum
            sum += i;
    }
 
    // Return the sum
    return sum;
}
 
// Driver code
public static void Main()
{
    int N = 20, K = 4, R = 3;
    Console.Write(count(N, K, R));
}
}
 
// This code is contributed by
// Akanksha Rai


PHP




<?php
// PHP implementation of the approach
 
// Function to return the sum
function count1($N, $K, $R)
{
    $sum = 0;
    for ($i = 1; $i <= $N; $i++)
    {
 
        // If current number gives R as the
        // remainder on dividing by K
        if ($i % $K == $R)
 
            // Update the sum
            $sum += $i;
    }
 
    // Return the sum
    return $sum;
}
 
// Driver code
$N = 20; $K = 4; $R = 3;
echo count1($N, $K, $R);
 
// This code is contributed
// by Akanksha Rai
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
    // Function to return the sum
    function count(N , K , R) {
        var sum = 0;
        for (i = 1; i <= N; i++) {
 
            // If current number gives R as the
            // remainder on dividing by K
            if (i % K == R)
 
                // Update the sum
                sum += i;
        }
 
        // Return the sum
        return sum;
    }
 
    // Driver code
     
        var N = 20, K = 4, R = 3;
        document.write(count(N, K, R));
 
// This code contributed by aashish1995
 
</script>


Output: 

55

 

Time Complexity: O(N)

Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments