Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIArea of a square inscribed in a circle which is inscribed in...

Area of a square inscribed in a circle which is inscribed in an equilateral triangle

Given here is an equilateral triangle with side length a, which inscribes a circle, which in turn inscribes a square. The task is to find the area of this square.
Examples: 
 

Input: a = 6
Output: 1

Input: a = 10
Output: 0.527046

 

 

Approach:
 

let r be the radius of circle, 
hence it is the inradius of equilateral triangle, so r = a /(2 * ?3) 
diagonal of square, d = diameter of circle = 2 * r = a/ ?3 
So, area of square, A = 0.5 * d * d 
hence A = (1/2) * (a^2) / (3) = (a^2/6)

Below is the implementation of the above approach: 
 

C++




// C++ Program to find the area of the square
// inscribed within the circle which in turn
// is inscribed in an equilateral triangle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area of the square
float area(float a)
{
 
    // a cannot be negative
    if (a < 0)
        return -1;
 
    // area of the square
    float area = sqrt(a) / 6;
 
    return area;
}
 
// Driver code
int main()
{
    float a = 10;
    cout << area(a) << endl;
    return 0;
}


Java




// Java Program to find the area of the square
// inscribed within the circle which in turn
// is inscribed in an equilateral triangle
 
import java.io.*;
 
class GFG {
    
 
// Function to find the area of the square
static float area(float a)
{
 
    // a cannot be negative
    if (a < 0)
        return -1;
 
    // area of the square
    float area = (float)Math.sqrt(a) / 6;
 
    return area;
}
 
// Driver code
    public static void main (String[] args) {
        float a = 10;
    System.out.println( area(a));
// This code is contributed
// by  inder_verma..
    }
}


Python 3




# Python3 Program to find the area
# of the square inscribed within 
# the circle which in turn is
# inscribed in an equilateral triangle
 
# import everything from math lib.
from math import *
 
# Function to find the area
# of the square
def area(a):
 
    # a cannot be negative
    if a < 0 :
        return -1
 
    # area of the square
    area = sqrt(a) / 6
 
    return area
 
# Driver code    
if __name__ == "__main__" :
 
    a = 10
    print(round(area(a), 6))
 
# This code is contributed by ANKITRAI1


C#




// C# Program to find the area
// of the square inscribed within
// the circle which in turn is
// inscribed in an equilateral triangle
using System;
 
class GFG
{
     
// Function to find the area
// of the square
static float area(float a)
{
 
    // a cannot be negative
    if (a < 0)
        return -1;
 
    // area of the square
    float area = (float)Math.Sqrt(a) / 6;
 
    return area;
}
 
// Driver code
public static void Main ()
{
    float a = 10;
    Console.WriteLine(area(a));
}
}
 
// This code is contributed
// by inder_verma


PHP




<?php
// PHP Program to find the area
// of the square inscribed within
// the circle which in turn is
// inscribed in an equilateral triangle
 
// Function to find the
// area of the square
function area($a)
{
 
    // a cannot be negative
    if ($a < 0)
        return -1;
 
    // area of the square
    $area = sqrt($a) / 6;
 
    return $area;
}
 
// Driver code
$a = 10;
echo area($a);
 
// This code is contributed
// by inder_verma
?>


Javascript




<script>
// javascript Program to find the area of the square
// inscribed within the circle which in turn
// is inscribed in an equilateral triangle
 
 
// Function to find the area of the square
function area(a)
{
 
    // a cannot be negative
    if (a < 0)
        return -1;
 
    // area of the square
    var area = Math.sqrt(a) / 6;
 
    return area;
}
 
// Driver code
var a = 10;
document.write( area(a).toFixed(6));
 
 
// This code contributed by shikhasingrajput
 
</script>


Output: 

0.527046

 

Time complexity : O(log(a)) for given side a, as complexity of inbuilt sqrt function
Auxiliary Space : O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments