Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIRow-wise common elements in two diagonals of a square matrix

Row-wise common elements in two diagonals of a square matrix

Given a square matrix, find out count of numbers that are same in same row and same in both primary and secondary diagonals.

Examples : 

Input : 1 2 1
        4 5 2
        0 5 1
Output : 2
Primary diagonal is 1 5 1
Secondary diagonal is 1 5 0
Two elements (1 and 5) match 
in two diagonals and same.

Input : 1 0 0
        0 1 0
        0 0 1
Output : 1
Primary diagonal is 1 1 1
Secondary diagonal is 0 1 0
Only one element is same.

We can achieve this in O(n) time, O(1) space and only one traversal. We can find current element in i-th row of primary diagonal as mat[i][i] and i-th element of secondary diagonal as mat[i][n-i-1]. 

Implementation:

C++




// CPP program to find common elements in
// two diagonals.
#include <iostream>
#define MAX 100
using namespace std;
 
// Returns count of row wise same
// elements in two diagonals of
// mat[n][n]
int countCommon(int mat[][MAX], int n)
{
    int res = 0;
    for (int i=0;i<n;i++)
        if (mat[i][i] == mat[i][n-i-1])
             res++;
    return res;
}
 
// Driver Code
int main()
{
    int mat[][MAX] = {{1, 2, 3},
                      {4, 5, 6},
                      {7, 8, 9}};
    cout << countCommon(mat, 3);
    return 0;
}


Java




// Java program to find common
// elements in two diagonals.
import java.io.*;
 
class GFG
{
    int MAX = 100;
     
    // Returns count of row wise same elements
    // in two diagonals of mat[n][n]
    static int countCommon(int mat[][], int n)
    {
        int res = 0;
        for (int i = 0; i < n; i++)
            if (mat[i][i] == mat[i][n - i - 1])
                res++;
        return res;
    }
 
    // Driver Code
    public static void main(String args[])throws IOException
    {
        int mat[][] = {{1, 2, 3},
                       {4, 5, 6},
                       {7, 8, 9}};
        System.out.println(countCommon(mat, 3));
    }
}
 
// This code is contributed by Anshika Goyal.


Python3




# Python3 program to find common
# elements in two diagonals.
 
Max = 100
 
# Returns count of row wise same
# elements in two diagonals of
# mat[n][n]
def countCommon(mat, n):
    res = 0
     
    for i in range(n):
         
        if mat[i][i] == mat[i][n-i-1] :
            res = res + 1
    return res    
 
# Driver Code
mat = [[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]]
 
print(countCommon(mat, 3))
 
# This code is contributed by Anant Agarwal.


C#




// C# program to find common
// elements in two diagonals.
using System;
 
class GFG {
     
    // Returns count of row wise same
    // elements in two diagonals of
    // mat[n][n]
    static int countCommon(int [,]mat, int n)
    {
        int res = 0;
         
        for (int i = 0; i < n; i++)
            if (mat[i,i] == mat[i,n - i - 1])
                res++;
                 
        return res;
    }
 
    // Driver Code
    public static void Main()
    {
        int [,]mat = {{1, 2, 3},
                      {4, 5, 6},
                      {7, 8, 9}};
        Console.WriteLine(countCommon(mat, 3));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find common
// elements in two diagonals.
$MAX = 100;
 
// Returns count of row wise
// same elements in two
// diagonals of mat[n][n]
function countCommon($mat, $n)
{
    global $MAX;
    $res = 0;
    for ($i = 0; $i < $n; $i++)
        if ($mat[$i][$i] == $mat[$i][$n - $i - 1])
            $res++;
    return $res;
}
 
// Driver Code
$mat = array(array(1, 2, 3),
             array(4, 5, 6),
             array(7, 8, 9));
echo countCommon($mat, 3);
 
// This code is contributed by aj_36
?>


Javascript




<script>
// Javascript program to find common elements in
// two diagonals.
let MAX = 100;
 
// Returns count of row wise same
// elements in two diagonals of
// mat[n][n]
function countCommon(mat, n)
{
    let res = 0;
    for (let i = 0; i < n; i++)
        if (mat[i][i] == mat[i][n - i - 1])
             res++;
    return res;
}
 
// Driver Code
    let mat = [[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]];
    document.write(countCommon(mat, 3));
 
// This code is contributed by subham348.
</script>


Output

1

Time Complexity: O(n). 
Auxiliary Space: O(1).

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments