Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMaximum XOR path of a Binary Tree

Maximum XOR path of a Binary Tree

Given a Binary Tree, the task is to find the maximum of all the XOR value of all the nodes in the path from the root to leaf.
Examples: 
 

Input: 
       2
      / \
     1   4
    / \   
   10  8   
Output: 11
Explanation:
All the paths are: 
2-1-10 XOR-VALUE = 9
2-1-8 XOR-VALUE = 11
2-4 XOR-VALUE = 6

Input: 
        2
      /   \
     1     4
    / \   / \
   10  8 5  10
Output: 12

 

Approach: 
 

  1. To solve the question mentioned above we have to traverse the tree recursively using pre-order traversal. For each node keep calculating the XOR of the path from root till the current node.

XOR of current node’s path = (XOR of the path till the parent) ^ (current node value)

  1. If the node is a leaf node that is left and the right child for the current nodes are NULL then we compute the max-Xor, as

max-Xor = max(max-Xor, cur-Xor).

Below is the implementation of the above approach:
 

C++




// C++ program to compute the
// Max-Xor value of path from
// the root to leaf of a Binary tree
 
#include <bits/stdc++.h>
using namespace std;
 
// Binary tree node
struct Node {
    int data;
 
    struct Node *left, *right;
};
 
// Function to create a new node
struct Node* newNode(int data)
{
    struct Node* newNode = new Node;
 
    newNode->data = data;
 
    newNode->left
        = newNode->right = NULL;
 
    return (newNode);
}
 
// Function calculate the
// value of max-xor
void Solve(Node* root, int xr,
           int& max_xor)
{
 
    // Updating the xor value
    // with the xor of the
    // path from root to
    // the node
    xr = xr ^ root->data;
 
    // Check if node is leaf node
    if (root->left == NULL
        && root->right == NULL) {
 
        max_xor = max(max_xor, xr);
        return;
    }
 
    // Check if the left
    // node exist in the tree
    if (root->left != NULL) {
        Solve(root->left, xr,
              max_xor);
    }
 
    // Check if the right node
    // exist in the tree
    if (root->right != NULL) {
        Solve(root->right, xr,
              max_xor);
    }
 
    return;
}
 
// Function to find the
// required count
int findMaxXor(Node* root)
{
 
    int xr = 0, max_xor = 0;
 
    // Recursively traverse
    // the tree and compute
    // the max_xor
    Solve(root, xr, max_xor);
 
    // Return the result
    return max_xor;
}
 
// Driver code
int main(void)
{
    // Create the binary tree
    struct Node* root = newNode(2);
    root->left = newNode(1);
    root->right = newNode(4);
    root->left->left = newNode(10);
    root->left->right = newNode(8);
    root->right->left = newNode(5);
    root->right->right = newNode(10);
 
    cout << findMaxXor(root);
 
    return 0;
}


Java




// Java program to compute the
// Max-Xor value of path from
// the root to leaf of a Binary tree
class GFG {
 
  // Binary tree node
  static class Node {
    int data = 0;
 
    Node left = null, right = null;
  };
 
  // Function to create a new node
  static Node newNode(int data) {
    Node newNode = new Node();
 
    newNode.data = data;
 
    newNode.left = newNode.right = null;
 
    return (newNode);
  }
 
  // Function calculate the
  // value of max-xor
  static int Solve(Node root, int xr, int max_xor) {
 
    // Updating the xor value
    // with the xor of the
    // path from root to
    // the node
    xr = xr ^ root.data;
 
    // Check if node is leaf node
    if (root.left == null
        && root.right == null) {
 
      max_xor = Math.max(max_xor, xr);
      return max_xor;
    }
 
    // Check if the left
    // node exist in the tree
    if (root.left != null) {
      max_xor = Solve(root.left, xr,
                      max_xor);
    }
 
    // Check if the right node
    // exist in the tree
    if (root.right != null) {
      max_xor = Solve(root.right, xr,
                      max_xor);
    }
 
    return max_xor;
  }
 
  // Function to find the
  // required count
  static int findMaxXor(Node root) {
 
    int xr = 0, max_xor = 0;
 
    // Recursively traverse
    // the tree and compute
    // the max_xor
    max_xor = Solve(root, xr, max_xor);
 
    // Return the result
    return max_xor;
  }
 
  // Driver code
  public static void main(String args[])
  {
     
    // Create the binary tree
    Node root = newNode(2);
    root.left = newNode(1);
    root.right = newNode(4);
    root.left.left = newNode(10);
    root.left.right = newNode(8);
    root.right.left = newNode(5);
    root.right.right = newNode(10);
 
    System.out.print(findMaxXor(root));
  }
}
 
// This code is contributed by saurabh_jaiswal.


Python3




# Python3 program to compute the
# Max-Xor value of path from
# the root to leaf of a Binary tree
 
# Binary tree node
class Node:
     
    # Function to create a new node
    def __init__(self, data):
         
        self.data = data
        self.left = None
        self.right = None
 
# Function calculate the
# value of max-xor
def Solve(root, xr, max_xor):
     
    # Updating the xor value
    # with the xor of the
    # path from root to
    # the node
    xr = xr ^ root.data
     
    # Check if node is leaf node
    if (root.left == None and
        root.right == None):
        max_xor[0] = max(max_xor[0], xr)
     
    # Check if the left
    # node exist in the tree
    if root.left != None:
        Solve(root.left, xr, max_xor)
     
    # Check if the right node
    # exist in the tree
    if root.right != None:
        Solve(root.right, xr, max_xor)
         
    return
 
# Function to find the
# required count
def findMaxXor(root):
     
    xr, max_xor = 0, [0]
     
    # Recursively traverse
    # the tree and compute
    # the max_xor
    Solve(root, xr, max_xor)
     
    # Return the result
    return max_xor[0]
 
# Driver code
 
# Create the binary tree
root = Node(2)
root.left = Node(1)
root.right = Node(4)
root.left.left = Node(10)
root.left.right = Node(8)
root.right.left = Node(5)
root.right.right = Node(10)
 
print(findMaxXor(root))
 
# This code is contributed by Shivam Singh


C#




// C# code for the above approach
using System;
 
namespace GFG
{
  // Binary tree node
  class Node
  {
    public int data = 0;
    public Node left = null, right = null;
  }
 
  class GFG
  {
     
    // Function to create a new node
    static Node newNode(int data)
    {
      Node newNode = new Node();
 
      newNode.data = data;
 
      newNode.left = newNode.right = null;
 
      return (newNode);
    }
 
    // Function calculate the
    // value of max-xor
    static int Solve(Node root, int xr, int max_xor)
    {
      // Updating the xor value
      // with the xor of the
      // path from root to
      // the node
      xr = xr ^ root.data;
 
      // Check if node is leaf node
      if (root.left == null
          && root.right == null)
      {
        max_xor = Math.Max(max_xor, xr);
        return max_xor;
      }
 
      // Check if the left
      // node exist in the tree
      if (root.left != null)
      {
        max_xor = Solve(root.left, xr,
                        max_xor);
      }
 
      // Check if the right node
      // exist in the tree
      if (root.right != null)
      {
        max_xor = Solve(root.right, xr,
                        max_xor);
      }
 
      return max_xor;
    }
 
    // Function to find the
    // required count
    static int findMaxXor(Node root)
    {
      int xr = 0, max_xor = 0;
 
      // Recursively traverse
      // the tree and compute
      // the max_xor
      max_xor = Solve(root, xr, max_xor);
 
      // Return the result
      return max_xor;
    }
 
    // Driver code
    static void Main(string[] args)
    {
       
      // Create the binary tree
      Node root = newNode(2);
      root.left = newNode(1);
      root.right = newNode(4);
      root.left.left = newNode(10);
      root.left.right = newNode(8);
      root.right.left = newNode(5);
      root.right.right = newNode(10);
 
      Console.WriteLine(findMaxXor(root));
    }
  }
}
 
// This code is contributed by Potta Lokesh


Javascript




<script>
  
// JavaScript program to compute the
// Max-Xor value of path from
// the root to leaf of a Binary tree
 
// Binary tree node
class Node {
 
    constructor()
    {
        this.data = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Function to create a new node
function newNode(data)
{
    var newNode = new Node;
 
    newNode.data = data;
 
    newNode.left
        = newNode.right = null;
 
    return (newNode);
}
 
// Function calculate the
// value of Math.max-xor
function Solve(root, xr, max_xor)
{
 
    // Updating the xor value
    // with the xor of the
    // path from root to
    // the node
    xr = xr ^ root.data;
 
    // Check if node is leaf node
    if (root.left == null
        && root.right == null) {
 
        max_xor = Math.max(max_xor, xr);
        return max_xor;
    }
 
    // Check if the left
    // node exist in the tree
    if (root.left != null) {
        max_xor = Solve(root.left, xr,
              max_xor);
    }
 
    // Check if the right node
    // exist in the tree
    if (root.right != null) {
       max_xor = Solve(root.right, xr,
              max_xor);
    }
 
    return max_xor;
}
 
// Function to find the
// required count
function findMaxXor(root)
{
 
    var xr = 0, max_xor = 0;
 
    // Recursively traverse
    // the tree and compute
    // the max_xor
    max_xor = Solve(root, xr, max_xor);
 
    // Return the result
    return max_xor;
}
 
// Driver code
// Create the binary tree
var root = newNode(2);
root.left = newNode(1);
root.right = newNode(4);
root.left.left = newNode(10);
root.left.right = newNode(8);
root.right.left = newNode(5);
root.right.right = newNode(10);
document.write( findMaxXor(root));
 
</script>


Output: 

12

 

Time Complexity: We are iterating over each node only once, therefore it will take O(N) time where N is the number of nodes in the Binary tree. 
Auxiliary Space Complexity: The Auxiliary Space complexity will be O(1), as there is no extra space used
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments