Boom numbers are numbers consisting only of digits 2 and 3. Given an integer k (0<k<=10^7) , display the k-th Boom number.
Examples:
Input : k = 2 Output: 3 Input : k = 3 Output: 22 Input : k = 100 Output: 322323 Input: k = 1000000 Output: 3332322223223222223
The idea is very simple like Generate Binary Numbers . Here also we use same approach ,
we use queue data structure to solve this problem. First enqueue “2” then “3” these two are first and second boom number respectively. Now set count=2, for each time pop() front of queue and append “2” in popped number and increment count++ if (count==k) then print current Boom number else append “3” in popped number and increment count++ if (count==k) then print current Boom number. Repeat the process until we reach to K’th Boom number.
This approach can be seen as BFS of a tree with root as empty string. Left child of every node has a 2 appended and right child has 3 appended.
Below is the implementation of this idea.
C++
// C++ program to find K'th Boom number #include<bits/stdc++.h> using namespace std; typedef long long int ll; // This function uses queue data structure to K'th // Boom number void boomNumber(ll k) { // Create an empty queue of strings queue<string> q; // Enqueue an empty string q.push( "" ); // counter for K'th element ll count = 0; // This loop checks the value of count to // become equal to K when value of count // will be equals to k we will print the // Boom number while (count <= k) { // current Boom number string s1 = q.front(); // pop front q.pop(); // Store current Boom number before changing it string s2 = s1; // Append "2" to string s1 and enqueue it q.push(s1.append( "2" )); count++; // check if count==k if (count==k) { cout << s1 << endl; // K'th Boom number break ; } // Append "3" to string s2 and enqueue it. // Note that s2 contains the previous front q.push(s2.append( "3" )); count++; // check if count==k if (count==k) { cout << s2 << endl; // K'th Boom number break ; } } return ; } // Driver program to test above function int main() { ll k = 1000000; boomNumber(k); return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; class GFG { // This function uses queue data structure to K'th // Boom number static void boomNumber( long k) { // Create an empty queue of strings Queue<String> q = new LinkedList<String>(); // Enqueue an empty string q.add( "" ); // counter for K'th element long count = 0 ; // This loop checks the value of count to // become equal to K when value of count // will be equals to k we will print the // Boom number while (count <= k) { // current Boom number String s1 = q.poll(); // Store current Boom number before changing it String s2 = s1; // Append "2" to string s1 and enqueue it q.add(s1+ "2" ); count++; // check if count==k if (count==k) { System.out.println(s1); // K'th Boom number break ; } // Append "3" to string s2 and enqueue it. // Note that s2 contains the previous front q.add(s2+ "3" ); count++; // check if count==k if (count==k) { System.out.println(s2); // K'th Boom number break ; } } return ; } // Driver code public static void main(String args[]) { long k = 1000000 ; boomNumber(k); } } // This code is contributed by shinjanpatra |
Python3
# Python3 program to find K'th Boom number # This function uses queue data structure to K'th # Boom number def boomNumber(k): # Create an empty queue of strings q = [] # Enqueue an empty string q.append("") # counter for K'th element count = 0 # This loop checks the value of count to # become equal to K when value of count # will be equals to k we will print the # Boom number while (count < = k): # current Boom number s1 = q[ 0 ] # pop front q = q[ 1 :] # Store current Boom number before changing it s2 = s1 # Append "2" to string s1 and enqueue it s1 + = '2' q.append(s1) count = count + 1 # check if count==k if (count = = k): print (s1) # K'th Boom number break # Append "3" to string s2 and enqueue it. # Note that s2 contains the previous front s2 + = '3' q.append(s2) count = count + 1 # check if count==k if (count = = k): print (s2) # K'th Boom number break return # Driver program to test above function k = 1000000 boomNumber(k) # This code is contributed by shinjanpatra |
C#
// C# program to find K'th Boom number using System; using System.Collections; class GFG{ // This function uses queue data structure // to K'th Boom number static void boomNumber( long k) { // Create an empty queue of strings Queue q = new Queue(); // Enqueue an empty string q.Enqueue( "" ); // counter for K'th element long count = 0; // This loop checks the value of count to // become equal to K when value of count // will be equals to k we will print the // Boom number while (count <= k) { // current Boom number string s1 = ( string )q.Dequeue(); // Store current Boom number // before changing it string s2 = s1; // Append "2" to string s1 and // enqueue it s1 += "2" ; q.Enqueue(s1); count++; // Check if count==k if (count == k) { // K'th Boom number Console.Write(s1); break ; } // Append "3" to string s2 and enqueue it. // Note that s2 contains the previous front s2 += "3" ; q.Enqueue(s2); count++; // Check if count==k if (count == k) { // K'th Boom number Console.Write(s2); break ; } } return ; } // Driver code public static void Main( string []arg) { long k = 1000000; boomNumber(k); } } // This code is contributed by rutvik_56 |
Javascript
<script> // JavaScript program to find K'th Boom number // This function uses queue data structure to K'th // Boom number function boomNumber(k){ // Create an empty queue of strings let q = [] // Enqueue an empty string q.push( "" ) // counter for K'th element let count = 0 // This loop checks the value of count to // become equal to K when value of count // will be equals to k we will print the // Boom number while (count <= k){ // current Boom number let s1 = q.shift() // Store current Boom number before changing it let s2 = s1 // Append "2" to string s1 and enqueue it s1 += '2 ' q.push(s1) count = count + 1 // check if count==k if (count==k){ document.write(s1,"</br>") // K' th Boom number break } // Append "3" to string s2 and enqueue it. // Note that s2 contains the previous front s2 += '3' q.push(s2) count = count + 1 // check if count==k if (count==k){ document.write(s2, "</br>" ) // K'th Boom number break } } return } // Driver program to test above function let k = 1000000 boomNumber(k) // This code is contributed by shinjanpatra </script> |
3332322223223222223
Time Complexity: O(K)
Auxiliary Space: O(n)
This article is reviewed by team neveropen.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!