Thursday, November 28, 2024
Google search engine
HomeData Modelling & AISum of elements in range L-R where first half and second half...

Sum of elements in range L-R where first half and second half is filled with odd and even numbers

Given a number N, create an array such the first half of the array is filled with odd numbers till N, and the second half of the array is filled with even numbers. Also given are L and R indices, the task is to print the sum of elements in the array in the range [L, R]. 

Examples: 

Input: N = 12, L = 1, R = 11 
Output: 66 
The array formed thus is {1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10, 12} 
The sum between index 1 and index 11 is 66 {1+3+5+7+9+11+2+4+6+8+10}

Input: N = 11, L = 3 and R = 7 
Output: 34 
The array formed is {1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10} 
The sum between index 3 and index 7 is 34 {5+7+9+11+2}

A naive approach will be to form the array of size N and iterate from L to R and return the sum.  

C++




// C++ program to find the sum between L-R
// range by creating the array
// Naive Approach
#include<bits/stdc++.h>
using namespace std;
 
    // Function to find the sum between L and R
    int rangesum(int n, int l, int r)
    {
        // array created
        int arr[n];
 
        // fill the first half of array
        int c = 1, i = 0;
        while (c <= n) {
            arr[i++] = c;
            c += 2;
        }
 
        // fill the second half of array
        c = 2;
        while (c <= n) {
            arr[i++] = c;
            c += 2;
        }
        int sum = 0;
 
        // find the sum between range
        for (i = l - 1; i < r; i++) {
            sum += arr[i];
        }
 
        return sum;
    }
 
    // Driver Code
    int  main()
    {
        int n = 12;
        int l = 1, r = 11;
        cout<<(rangesum(n, l, r));
    }
// This code is contributed by
// Sanjit_Prasad


Java




// Java program to find the sum between L-R
// range by creating the array
// Naive Approach
import java.io.*;
public class GFG {
 
    // Function to find the sum between L and R
    static int rangesum(int n, int l, int r)
    {
        // array created
        int[] arr = new int[n];
 
        // fill the first half of array
        int c = 1, i = 0;
        while (c <= n) {
            arr[i++] = c;
            c += 2;
        }
 
        // fill the second half of array
        c = 2;
        while (c <= n) {
            arr[i++] = c;
            c += 2;
        }
        int sum = 0;
 
        // find the sum between range
        for (i = l - 1; i < r; i++) {
            sum += arr[i];
        }
 
        return sum;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 12;
        int l = 1, r = 11;
        System.out.println(rangesum(n, l, r));
    }
}


Python3




# Python3 program to find the sum between L-R
# range by creating the array
# Naive Approach
 
# Function to find the sum between L and R
def rangesum(n, l, r):
 
    # array created
    arr = [0] * n;
 
    # fill the first half of array
    c = 1; i = 0;
    while (c <= n):
        arr[i] = c;
        i += 1;
        c += 2;
     
    # fill the second half of array
    c = 2;
    while (c <= n):
        arr[i] = c;
        i += 1;
        c += 2;
 
    sum = 0;
 
    # find the sum between range
    for i in range(l - 1, r, 1):
        sum += arr[i];
     
    return sum;
 
# Driver Code
if __name__ == '__main__':
 
    n = 12;
    l, r = 1, 11;
    print(rangesum(n, l, r));
     
# This code contributed by PrinciRaj1992


C#




// C# program to find the sum
// between L-R range by creating
// the array Naive Approach
using System;
 
class GFG
{
 
    // Function to find the
    // sum between L and R
    static int rangesum(int n,
                        int l, int r)
    {
        // array created
        int[] arr = new int[n];
 
        // fill the first
        // half of array
        int c = 1, i = 0;
        while (c <= n)
        {
            arr[i++] = c;
            c += 2;
        }
 
        // fill the second
        // half of array
        c = 2;
        while (c <= n)
        {
            arr[i++] = c;
            c += 2;
        }
        int sum = 0;
 
        // find the sum
        // between range
        for (i = l - 1; i < r; i++)
        {
            sum += arr[i];
        }
 
        return sum;
    }
 
    // Driver Code
    public static void Main()
    {
        int n = 12;
        int l = 1, r = 11;
        Console.WriteLine(rangesum(n, l, r));
    }
}
 
// This code is contributed
// by inder_verma.


PHP




<?php
// PHP program to find the sum between
// L-R range by creating the array
// Naive Approach
 
// Function to find the sum between L and R
function rangesum($n, $l, $r)
{
    // array created
    $arr = array_fill(0, $n, 0);
 
    // fill the first half of array
    $c = 1;
    $i = 0;
    while ($c <= $n)
    {
        $arr[$i++] = $c;
        $c += 2;
    }
 
    // fill the second half of array
    $c = 2;
    while ($c <= $n)
    {
        $arr[$i++] = $c;
        $c += 2;
    }
    $sum = 0;
 
    // find the sum between range
    for ($i = $l - 1; $i < $r; $i++)
    {
        $sum += $arr[$i];
    }
 
    return $sum;
}
 
// Driver Code
$n = 12;
$l = 1;
$r = 11;
echo(rangesum($n, $l, $r));
     
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript program to find the sum between L-R
// range by creating the array
// Naive Approach
 
    // Function to find the sum between L and R
    function rangesum(n, l, r)
    {
        // array created
        let arr = new Array(n);
 
        // fill the first half of array
        let c = 1, i = 0;
        while (c <= n) {
            arr[i++] = c;
            c += 2;
        }
 
        // fill the second half of array
        c = 2;
        while (c <= n) {
            arr[i++] = c;
            c += 2;
        }
        let sum = 0;
 
        // find the sum between range
        for (i = l - 1; i < r; i++) {
            sum += arr[i];
        }
 
        return sum;
    }
 
    // Driver Code
    let n = 12;
    let l = 1, r = 11;
    document.write(rangesum(n, l, r));
     
    // This code is contributed by rishavmahato348.
</script>


Output: 

66

 

Time complexity: O(N) 
Auxiliary Space: O(N)

Efficient Approach: Without building the array the problem can be solved in O(1) complexity. Consider the middle point of the sequence thus formed. Then there can be 3 possibilities for L and R.  

  • l and r both are on the right of the middle point.
  • l and r both are on the left of the middle point.
  • l is on the left of the middle point and r is on the left of the middle point.

For the 1st and 2nd case, just find the number which corresponds to the l-th position from the start or middle and the number which corresponds to the r-th position from start or middle. The below formula can be used to find out the sum:  

sum = (no. of terms in the range)*(first term + last term)/2

For the third case, consider it as [L-mid] and [mid-R] and then apply case 1 and case 2 formulae as mentioned above.
Below is the implementation of the above approach:  

C++




// C++ program to find the sum between L-R
// range by creating the array
// Naive Approach
#include<bits/stdc++.h>
using namespace std;
 
// // Function to calculate the sum if n is even
int sumeven(int n, int l, int r)
{
    int sum = 0;
    int mid = n / 2;
 
    // both l and r are to the left of mid
    if (r <= mid)
    {
        // first and last element
        int first = (2 * l - 1);
        int last = (2 * r - 1);
 
        // Total number of terms in
        // the sequence is r-l+1
        int no_of_terms = r - l + 1;
 
        // use of formula derived
        sum = ((no_of_terms) * ((first + last))) / 2;
    }
     
    // both l and r are to the right of mid
    else if (l >= mid)
    {
        // first and last element
        int first = (2 * (l - n / 2));
        int last = (2 * (r - n / 2));
 
        int no_of_terms = r - l + 1;
 
        // Use of formula derived
        sum = ((no_of_terms) * ((first + last))) / 2;
    }
 
    // left is to the left of mid and
    // right is to the right of mid
    else
    {
         
        // Take two sums i.e left and
        // right differently and add
        int sumleft = 0, sumright = 0;
 
        // first and last element
        int first_term1 = (2 * l - 1);
        int last_term1 = (2 * (n / 2) - 1);
 
        // total terms
        int no_of_terms1 = n / 2 - l + 1;
 
        // no of terms
        sumleft = ((no_of_terms1) *
                  ((first_term1 + last_term1))) / 2;
 
        // The first even number is 2
        int first_term2 = 2;
 
        // The last element is given by 2*(r-n/2)
        int last_term2 = (2 * (r - n / 2));
        int no_of_terms2 = r - mid;
 
        // formula applied
        sumright = ((no_of_terms2) *
                   ((first_term2 + last_term2))) / 2;
        sum = (sumleft + sumright);
    }
    return sum;
}
 
// Function to calculate the sum if n is odd
int sumodd(int n, int l, int r)
{
 
    // take ceil value if n is odd
    int mid = n / 2 + 1;
    int sum = 0;
 
    // // both l and r are to the left of mid
    if (r <= mid)
    {
        // first and last element
        int first = (2 * l - 1);
        int last = (2 * r - 1);
 
        // number of terms
        int no_of_terms = r - l + 1;
 
        // formula
        sum = ((no_of_terms) *
             ((first + last))) / 2;
    }
 
    // // both l and r are to the right of mid
    else if (l > mid)
    {
 
        // first and last term,
        int first = (2 * (l - mid));
        int last = (2 * (r - mid));
 
        // no of terms
        int no_of_terms = r - l + 1;
 
        // formula used
        sum = ((no_of_terms) *
              ((first + last))) / 2;
    }
 
    // If l is on left and r on right
    else
    {
 
        // calculate separate sums
        int sumleft = 0, sumright = 0;
 
        // first half
        int first_term1 = (2 * l - 1);
        int last_term1 = (2 * mid - 1);
 
        // calculate terms
        int no_of_terms1 = mid - l + 1;
        sumleft = ((no_of_terms1) *
                  ((first_term1 + last_term1))) / 2;
 
        // second half
        int first_term2 = 2;
        int last_term2 = (2 * (r - mid));
        int no_of_terms2 = r - mid;
        sumright = ((no_of_terms2) *
                   ((first_term2 + last_term2))) / 2;
 
        // add both halves
        sum = (sumleft + sumright);
    }
    return sum;
}
 
// Function to find the sum between L and R
int rangesum(int n, int l, int r)
{
    int sum = 0;
 
    // If n is even
    if (n % 2 == 0)
        return sumeven(n, l, r);
 
    // If n is odd
    else
        return sumodd(n, l, r);
}
 
// Driver Code
int main()
{
    int n = 12;
    int l = 1, r = 11;
    cout << (rangesum(n, l, r));
}
 
// This code is contributed by 29AjayKumar


Java




// Java program to find the sum between L-R
// range by creating the array
// Efficient Approach
import java.io.*;
public class GFG {
 
    // // Function to calculate the sum if n is even
    static int sumeven(int n, int l, int r)
    {
        int sum = 0;
        int mid = n / 2;
 
        // both l and r are to the left of mid
        if (r <= mid) {
            // first and last element
            int first = (2 * l - 1);
            int last = (2 * r - 1);
 
            // Total number of terms in
            // the sequence is r-l+1
            int no_of_terms = r - l + 1;
 
            // use of formula derived
            sum = ((no_of_terms) * ((first + last))) / 2;
        }
        // both l and r are to the right of mid
        else if (l >= mid) {
            // // first and last element
            int first = (2 * (l - n / 2));
            int last = (2 * (r - n / 2));
 
            int no_of_terms = r - l + 1;
 
            // Use of formula derived
            sum = ((no_of_terms) * ((first + last))) / 2;
        }
 
        // left is to the left of mid and
        // right is to the right of mid
        else {
            // Take two sums i.e left and
            // right differently and add
            int sumleft = 0, sumright = 0;
 
            // first and last element
            int first_term1 = (2 * l - 1);
            int last_term1 = (2 * (n / 2) - 1);
 
            // total terms
            int no_of_terms1 = n / 2 - l + 1;
 
            // no of terms
            sumleft = ((no_of_terms1) * ((first_term1 + last_term1))) / 2;
 
            // The first even number is 2
            int first_term2 = 2;
 
            // The last element is given by 2*(r-n/2)
            int last_term2 = (2 * (r - n / 2));
            int no_of_terms2 = r - mid;
 
            // formula applied
            sumright = ((no_of_terms2) * ((first_term2 + last_term2))) / 2;
            sum = (sumleft + sumright);
        }
 
        return sum;
    }
 
    // Function to calculate the sum if n is odd
    static int sumodd(int n, int l, int r)
    {
 
        // take ceil value if n is odd
        int mid = n / 2 + 1;
        int sum = 0;
 
        // // both l and r are to the left of mid
        if (r <= mid) {
            // first and last element
            int first = (2 * l - 1);
            int last = (2 * r - 1);
 
            // number of terms
            int no_of_terms = r - l + 1;
 
            // formula
            sum = ((no_of_terms) * ((first + last))) / 2;
        }
 
        // // both l and r are to the right of mid
        else if (l > mid) {
 
            // first and last term,
            int first = (2 * (l - mid));
            int last = (2 * (r - mid));
 
            // no of terms
            int no_of_terms = r - l + 1;
 
            // formula used
            sum = ((no_of_terms) * ((first + last))) / 2;
        }
 
        // If l is on left and r on right
        else {
 
            // calculate separate sums
            int sumleft = 0, sumright = 0;
 
            // first half
            int first_term1 = (2 * l - 1);
            int last_term1 = (2 * mid - 1);
 
            // calculate terms
            int no_of_terms1 = mid - l + 1;
            sumleft = ((no_of_terms1) * ((first_term1 + last_term1))) / 2;
 
            // second half
            int first_term2 = 2;
            int last_term2 = (2 * (r - mid));
            int no_of_terms2 = r - mid;
            sumright = ((no_of_terms2) * ((first_term2 + last_term2))) / 2;
 
            // add both halves
            sum = (sumleft + sumright);
        }
 
        return sum;
    }
    // Function to find the sum between L and R
    static int rangesum(int n, int l, int r)
    {
        int sum = 0;
 
        // If n is even
        if (n % 2 == 0)
            return sumeven(n, l, r);
 
        // If n is odd
        else
            return sumodd(n, l, r);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 12;
        int l = 1, r = 11;
        System.out.println(rangesum(n, l, r));
    }
}


Python3




# Python3 program to find
# the sum between L-R range
# by creating the array
# Naive Approach
 
# Function to calculate
# the sum if n is even
def sumeven(n, l, r):
 
    sum = 0
    mid = n // 2
 
    # Both l and r are
    # to the left of mid
    if (r <= mid):
     
        # First and last element
        first = (2 * l - 1)
        last = (2 * r - 1)
 
        # Total number of terms in
        # the sequence is r-l+1
        no_of_terms = r - l + 1
 
        # Use of formula derived
        sum = ((no_of_terms) *
              ((first + last))) // 2
    
    # Both l and r are to the right of mid
    elif (l >= mid):
     
        # First and last element
        first = (2 * (l - n // 2))
        last = (2 * (r - n // 2))
 
        no_of_terms = r - l + 1
 
        # Use of formula derived
        sum = ((no_of_terms) *
              ((first + last))) // 2
 
    # Left is to the left of mid and
    # right is to the right of mid
    else :
       
        # Take two sums i.e left and
        # right differently and add
        sumleft, sumright = 0, 0
 
        # First and last element
        first_term1 = (2 * l - 1)
        last_term1 = (2 * (n // 2) - 1)
 
        # total terms
        no_of_terms1 = n // 2 - l + 1
 
        # no of terms
        sumleft = (((no_of_terms1) *
                  ((first_term1 +
                    last_term1))) // 2)
 
        # The first even number is 2
        first_term2 = 2
 
        # The last element is
        #
        last_term2 = (2 * (r - n // 2))
        no_of_terms2 = r - mid
 
        # formula applied
        sumright = (((no_of_terms2) *
                   ((first_term2 +
                     last_term2))) // 2)
        sum = (sumleft + sumright);
   
    return sum
 
# Function to calculate
# the sum if n is odd
def sumodd(n, l, r):
   
    # Take ceil value if n is odd
    mid = n // 2 + 1;
    sum = 0
 
    # Both l and r are to
    # the left of mid
    if (r <= mid):
     
        # First and last element
        first = (2 * l - 1)
        last = (2 * r - 1)
 
        # number of terms
        no_of_terms = r - l + 1
 
        # formula
        sum = (((no_of_terms) *
              ((first + last))) // 2)
    
    # both l and r are to the right of mid
    elif (l > mid):
     
        # first and last term,
        first = (2 * (l - mid))
        last = (2 * (r - mid))
 
        # no of terms
        no_of_terms = r - l + 1
 
        # formula used
        sum = (((no_of_terms) *
              ((first + last))) // 2)
     
    # If l is on left and r on right
    else :
 
        # calculate separate sums
        sumleft, sumright = 0, 0
 
        # first half
        first_term1 = (2 * l - 1)
        last_term1 = (2 * mid - 1)
 
        # calculate terms
        no_of_terms1 = mid - l + 1
        sumleft = (((no_of_terms1) *
                  ((first_term1 +
                    last_term1))) // 2)
 
        # second half
        first_term2 = 2
        last_term2 = (2 * (r - mid))
        no_of_terms2 = r - mid
        sumright = (((no_of_terms2) *
                   ((first_term2 +
                     last_term2))) // 2)
 
        # add both halves
        sum = (sumleft + sumright)
     
    return sum
 
# Function to find the
# sum between L and R
def rangesum(n, l, r):
 
    sum = 0
 
    # If n is even
    if (n % 2 == 0):
        return sumeven(n, l, r);
 
    # If n is odd
    else:
        return sumodd(n, l, r)
 
# Driver Code
if __name__ == "__main__":
    n = 12
    l = 1
    r = 11;
    print (rangesum(n, l, r))
 
# This code is contributed by Chitranayal


C#




// C# program to find the sum
// between L-R range by creating
// the array Efficient Approach
using System;
 
class GFG
{
 
    // Function to calculate
    // the sum if n is even
    static int sumeven(int n,
                       int l, int r)
    {
        int sum = 0;
        int mid = n / 2;
 
        // both l and r are
        // to the left of mid
        if (r <= mid)
        {
            // first and last element
            int first = (2 * l - 1);
            int last = (2 * r - 1);
 
            // Total number of terms in
            // the sequence is r-l+1
            int no_of_terms = r - l + 1;
 
            // use of formula derived
            sum = ((no_of_terms) *
                  ((first + last))) / 2;
        }
         
        // both l and r are
        // to the right of mid
        else if (l >= mid)
        {
            // first and last element
            int first = (2 * (l - n / 2));
            int last = (2 * (r - n / 2));
 
            int no_of_terms = r - l + 1;
 
            // Use of formula derived
            sum = ((no_of_terms) *
                  ((first + last))) / 2;
        }
 
        // left is to the left of
        // mid and right is to the
        // right of mid
        else
        {
            // Take two sums i.e left and
            // right differently and add
            int sumleft = 0, sumright = 0;
 
            // first and last element
            int first_term1 = (2 * l - 1);
            int last_term1 = (2 * (n / 2) - 1);
 
            // total terms
            int no_of_terms1 = n / 2 - l + 1;
 
            // no of terms
            sumleft = ((no_of_terms1) *
                      ((first_term1 +
                        last_term1))) / 2;
 
            // The first even
            // number is 2
            int first_term2 = 2;
 
            // The last element is
            // given by 2*(r-n/2)
            int last_term2 = (2 * (r - n / 2));
            int no_of_terms2 = r - mid;
 
            // formula applied
            sumright = ((no_of_terms2) *
                       ((first_term2 +
                         last_term2))) / 2;
            sum = (sumleft + sumright);
        }
 
        return sum;
    }
 
    // Function to calculate
    // the sum if n is odd
    static int sumodd(int n,
                      int l, int r)
    {
 
        // take ceil value
        // if n is odd
        int mid = n / 2 + 1;
        int sum = 0;
 
        // both l and r are
        // to the left of mid
        if (r <= mid)
        {
            // first and last element
            int first = (2 * l - 1);
            int last = (2 * r - 1);
 
            // number of terms
            int no_of_terms = r - l + 1;
 
            // formula
            sum = ((no_of_terms) *
                  ((first + last))) / 2;
        }
 
        // both l and r are
        // to the right of mid
        else if (l > mid)
        {
 
            // first and last term,
            int first = (2 * (l - mid));
            int last = (2 * (r - mid));
 
            // no of terms
            int no_of_terms = r - l + 1;
 
            // formula used
            sum = ((no_of_terms) *
                  ((first + last))) / 2;
        }
 
        // If l is on left
        // and r on right
        else
        {
 
            // calculate separate sums
            int sumleft = 0, sumright = 0;
 
            // first half
            int first_term1 = (2 * l - 1);
            int last_term1 = (2 * mid - 1);
 
            // calculate terms
            int no_of_terms1 = mid - l + 1;
            sumleft = ((no_of_terms1) *
                      ((first_term1 +
                        last_term1))) / 2;
 
            // second half
            int first_term2 = 2;
            int last_term2 = (2 * (r - mid));
            int no_of_terms2 = r - mid;
            sumright = ((no_of_terms2) *
                       ((first_term2 +
                         last_term2))) / 2;
 
            // add both halves
            sum = (sumleft + sumright);
        }
 
        return sum;
    }
     
    // Function to find the
    // sum between L and R
    static int rangesum(int n,
                        int l, int r)
    {
         
        // If n is even
        if (n % 2 == 0)
            return sumeven(n, l, r);
 
        // If n is odd
        else
            return sumodd(n, l, r);
    }
 
    // Driver Code
    public static void Main()
    {
        int n = 12;
        int l = 1, r = 11;
        Console.WriteLine(rangesum(n, l, r));
    }
}
 
// This code is contributed
// by chandan_jnu.


Javascript




<script>
// Javascript program to find the sum between L-R
// range by creating the array
// Efficient Approach
     
     // Function to calculate the sum if n is even
    function sumeven(n,l,r)
    {
        let sum = 0;
        let mid = Math.floor(n / 2);
  
        // both l and r are to the left of mid
        if (r <= mid) {
            // first and last element
            let first = (2 * l - 1);
            let last = (2 * r - 1);
  
            // Total number of terms in
            // the sequence is r-l+1
            let no_of_terms = r - l + 1;
  
            // use of formula derived
            sum = ((no_of_terms) * ((first + last))) / 2;
        }
        // both l and r are to the right of mid
        else if (l >= mid) {
            // // first and last element
            let first = (2 * (l - n / 2));
            let last = (2 * (r - n / 2));
  
            let no_of_terms = r - l + 1;
  
            // Use of formula derived
            sum = ((no_of_terms) * ((first + last))) / 2;
        }
  
        // left is to the left of mid and
        // right is to the right of mid
        else {
            // Take two sums i.e left and
            // right differently and add
            let sumleft = 0, sumright = 0;
  
            // first and last element
            let first_term1 = (2 * l - 1);
            let last_term1 = (2 * (n / 2) - 1);
  
            // total terms
            let no_of_terms1 = n / 2 - l + 1;
  
            // no of terms
            sumleft = ((no_of_terms1) * ((first_term1 + last_term1))) / 2;
  
            // The first even number is 2
            let first_term2 = 2;
  
            // The last element is given by 2*(r-n/2)
            let last_term2 = (2 * (r - n / 2));
            let no_of_terms2 = r - mid;
  
            // formula applied
            sumright = ((no_of_terms2) * ((first_term2 + last_term2))) / 2;
            sum = (sumleft + sumright);
        }
  
        return sum;
    }
     
    // Function to calculate the sum if n is odd
    function sumodd(n,l,r)
    {
        // take ceil value if n is odd
        let mid = Math.floor(n / 2) + 1;
        let sum = 0;
  
        // // both l and r are to the left of mid
        if (r <= mid) {
            // first and last element
            let first = (2 * l - 1);
            let last = (2 * r - 1);
  
            // number of terms
            let no_of_terms = r - l + 1;
  
            // formula
            sum = ((no_of_terms) * ((first + last))) / 2;
        }
  
        // // both l and r are to the right of mid
        else if (l > mid) {
  
            // first and last term ,
            let first = (2 * (l - mid));
            let last = (2 * (r - mid));
  
            // no of terms
            let no_of_terms = r - l + 1;
  
            // formula used
            sum = ((no_of_terms) * ((first + last))) / 2;
        }
  
        // If l is on left and r on right
        else {
  
            // calculate separate sums
            let sumleft = 0, sumright = 0;
  
            // first half
            let first_term1 = (2 * l - 1);
            let last_term1 = (2 * mid - 1);
  
            // calculate terms
            let no_of_terms1 = mid - l + 1;
            sumleft = ((no_of_terms1) * ((first_term1 + last_term1))) / 2;
  
            // second half
            let first_term2 = 2;
            let last_term2 = (2 * (r - mid));
            let no_of_terms2 = r - mid;
            sumright = ((no_of_terms2) * ((first_term2 + last_term2))) / 2;
  
            // add both halves
            sum = (sumleft + sumright);
        }
  
        return sum;
    }
     
    // Function to find the sum between L and R
    function rangesum(n,l,r)
    {
        let sum = 0;
  
        // If n is even
        if (n % 2 == 0)
            return sumeven(n, l, r);
  
        // If n is odd
        else
            return sumodd(n, l, r);
    }
     
    // Driver Code
    let n = 12;
    let l = 1, r = 11;
    document.write(rangesum(n, l, r));
     
 
 
// This code is contributed by rag2127
</script>


Output: 

66

 

Time complexity: O(1) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments