Friday, December 27, 2024
Google search engine
HomeData Modelling & AISum of cost of all paths to reach a given cell in...

Sum of cost of all paths to reach a given cell in a Matrix

Given a matrix grid[][] and two integers M and N, the task is to find the sum of cost of all possible paths from the (0, 0) to (M, N) by moving a cell down or right. Cost of each path is defined as the sum of values of the cells visited in the path.
Examples: 
 

Input: M = 1, N = 1, grid[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} 
Output: 18 
Explanation: 
There are only 2 ways to reach (1, 1) 
Path 1: (0, 0) => (0, 1) => (1, 1) 
Path cost = 1 + 2 + 5 = 8 
Path 2: (0, 0) => (1, 0) => (1, 1) 
Path cost = 1 + 4 + 5 = 10 
Total Path Sum = 8 + 10 = 18
Input: M = 2, N = 2, grid = { {1, 1, 1}, {1, 1, 1}, {1, 1, 1} } 
Output: 30 
Explanation: 
Sum of path cost of all path is 30. 
 

 

Approach: The idea is to find the contribution of each cell of the matrix for reaching (M, N), that is, the contribution of the every i and j, where 0 <= i <= M and 0 <= j <= N
Below is the illustration of the contribution of each cell to all paths from (0, 0) to (M, N) through the respective cells:
 

Number of ways to reach (M, N) from (0, 0) = \binom{m+n}{m}
Number of ways to reach (M, N) from (0, 0) via (i, j) = \binom{m+n-i-j}{m-i} * \binom{i+j}{i}
Therefore, Contribution of each grid (i, j) is = grid[i][j] * \binom{m+n-i-j}{m-i} * \binom{i+j}{i}
 

Below is the implementation of the above approach:
 

C++




// C++ implementation to find the
// sum of cost of all paths
// to reach (M, N)
 
#include <iostream>
using namespace std;
 
const int Col = 3;
int fact(int n);
 
// Function for computing
// combination
int nCr(int n, int r)
{
    return fact(n) / (fact(r)
                      * fact(n - r));
}
 
// Function to find the
// factorial of N
int fact(int n)
{
    int res = 1;
 
    // Loop to find the factorial
    // of a given number
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Function for coumputing the
// sum of all path cost
int sumPathCost(int grid[][Col],
                int m, int n)
{
    int sum = 0, count;
 
    // Loop to find the contribution
    // of each (i, j) in the all possible
    // ways
    for (int i = 0; i <= m; i++) {
        for (int j = 0; j <= n; j++) {
 
            // Count number of
            // times (i, j) visited
            count
                = nCr(i + j, i)
                  * nCr(m + n - i - j, m - i);
 
            // Add the contribution of
            // grid[i][j] in the result
            sum += count * grid[i][j];
        }
    }
    return sum;
}
 
// Driver Code
int main()
{
 
    int m = 2;
    int n = 2;
    int grid[][Col] = { { 1, 2, 3 },
                        { 4, 5, 6 },
                        { 7, 8, 9 } };
 
    // Function Call
    cout << sumPathCost(grid, m, n);
    return 0;
}


Java




// Java implementation to find the
// sum of cost of all paths
// to reach (M, N)
import java.util.*;
 
class GFG{
 
static int Col = 3;
 
// Function for computing
// combination
static int nCr(int n, int r)
{
    return fact(n) / (fact(r) *
                      fact(n - r));
}
 
// Function to find the
// factorial of N
static int fact(int n)
{
    int res = 1;
 
    // Loop to find the factorial
    // of a given number
    for(int i = 2; i <= n; i++)
       res = res * i;
    return res;
}
 
// Function for coumputing the
// sum of all path cost
static int sumPathCost(int grid[][],
                       int m, int n)
{
    int sum = 0, count;
 
    // Loop to find the contribution
    // of each (i, j) in the all possible
    // ways
    for(int i = 0; i <= m; i++)
    {
       for(int j = 0; j <= n; j++)
       {
           
          // Count number of
          // times (i, j) visited
          count = nCr(i + j, i) *
                  nCr(m + n - i - j, m - i);
           
          // Add the contribution of
          // grid[i][j] in the result
          sum += count * grid[i][j];
       }
    }
    return sum;
}
 
// Driver code
public static void main(String[] args)
{
    int m = 2;
    int n = 2;
    int grid[][] = { { 1, 2, 3 },
                     { 4, 5, 6 },
                     { 7, 8, 9 } };
 
    // Function Call
    System.out.println(sumPathCost(grid, m, n));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 implementation to find the sum
# of cost of all paths to reach (M, N)
 
Col = 3;
 
# Function for computing
# combination
def nCr(n, r):
     
    return fact(n) / (fact(r) *
                      fact(n - r));
 
# Function to find the
# factorial of N
def fact(n):
     
    res = 1;
 
    # Loop to find the factorial
    # of a given number
    for i in range(2, n + 1):
        res = res * i;
    return res;
 
# Function for coumputing the
# sum of all path cost
def sumPathCost(grid, m, n):
     
    sum = 0;
    count = 0;
 
    # Loop to find the contribution
    # of each (i, j) in the all possible
    # ways
    for i in range(0, m + 1):
        for j in range(0, n + 1):
             
            # Count number of
            # times (i, j) visited
            count = (nCr(i + j, i) *
                     nCr(m + n - i - j, m - i));
 
            # Add the contribution of
            # grid[i][j] in the result
            sum += count * grid[i][j];
 
    return sum;
 
# Driver code
if __name__ == '__main__':
     
    m = 2;
    n = 2;
    grid = [ [ 1, 2, 3 ],
             [ 4, 5, 6 ],
             [ 7, 8, 9 ] ];
 
    # Function Call
    print(int(sumPathCost(grid, m, n)));
 
# This code is contributed by 29AjayKumar


C#




// C# implementation to find the
// sum of cost of all paths
// to reach (M, N)
using System;
 
class GFG{
 
// Function for computing
// combination
static int nCr(int n, int r)
{
    return fact(n) / (fact(r) *
                      fact(n - r));
}
 
// Function to find the
// factorial of N
static int fact(int n)
{
    int res = 1;
 
    // Loop to find the factorial
    // of a given number
    for(int i = 2; i <= n; i++)
       res = res * i;
    return res;
}
 
// Function for coumputing the
// sum of all path cost
static int sumPathCost(int [,]grid,
                       int m, int n)
{
    int sum = 0, count;
 
    // Loop to find the contribution
    // of each (i, j) in the all possible
    // ways
    for(int i = 0; i <= m; i++)
    {
       for(int j = 0; j <= n; j++)
       {
            
          // Count number of
          // times (i, j) visited
          count = nCr(i + j, i) *
                  nCr(m + n - i - j, m - i);
                   
          // Add the contribution of
          // grid[i][j] in the result
          sum += count * grid[i, j];
       }
    }
    return sum;
}
 
// Driver code
public static void Main()
{
    int m = 2;
    int n = 2;
    int [, ]grid = { { 1, 2, 3 },
                     { 4, 5, 6 },
                     { 7, 8, 9 } };
 
    // Function Call
    Console.Write(sumPathCost(grid, m, n));
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
// Javascript implementation to find the
// sum of cost of all paths
// to reach (M, N)
 
var Col = 3;
 
// Function for computing
// combination
function nCr(n, r)
{
    return fact(n) / (fact(r)
                      * fact(n - r));
}
 
// Function to find the
// factorial of N
function fact(n)
{
    var res = 1;
 
    // Loop to find the factorial
    // of a given number
    for (var i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Function for coumputing the
// sum of all path cost
function sumPathCost(grid, m, n)
{
    var sum = 0, count;
 
    // Loop to find the contribution
    // of each (i, j) in the all possible
    // ways
    for (var i = 0; i <= m; i++) {
        for (var j = 0; j <= n; j++) {
 
            // Count number of
            // times (i, j) visited
            count
                = nCr(i + j, i)
                  * nCr(m + n - i - j, m - i);
 
            // Add the contribution of
            // grid[i][j] in the result
            sum += count * grid[i][j];
        }
    }
    return sum;
}
 
// Driver Code
var m = 2;
var n = 2;
var grid = [ [ 1, 2, 3 ],
                    [ 4, 5, 6 ],
                    [ 7, 8, 9 ] ];
// Function Call
document.write( sumPathCost(grid, m, n));
 
 
</script>


Output: 

150

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments