Friday, January 3, 2025
Google search engine
HomeData Modelling & AIGenerate first K multiples of N using Bitwise operators

Generate first K multiples of N using Bitwise operators

Given an integer N, the task is to print the first K multiples of N using Bitwise Operators.

Examples:

Input: N = 16, K = 7 
Output: 
16 * 1 = 16 
16 * 2 = 32 
16 * 3 = 48 
16 * 4 = 64 
16 * 5 = 80 
16 * 6 = 96 
16 * 7 = 112
Input: N = 7, K = 10 
Output: 
7 * 1 = 7 
7 * 2 = 14 
7 * 3 = 21 
7 * 4 = 28 
7 * 5 = 35 
7 * 6 = 42 
7 * 7 = 49 
7 * 8 = 56 
7 * 9 = 63 
7 * 10 = 70 
 

Approach:

Follow the steps below to solve the problem: 
 

  • Iterate up to K.
  • For each iteration, print current value of N.
  • Then, calculate the sum of 2i for every ith set bit of N. Add this sum to N and repeat from the step above.

Below is the implementation of the above approach:
 

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the first K
// multiples of N
void Kmultiples(int n, int k)
{
    int a = n;
 
    for (int i = 1; i <= k; i++) {
 
        // Print the value of N*i
        cout << n << " * " << i << " = "
             << a << endl;
        int j = 0;
 
        // Iterate each bit of N and add
        // pow(2, pos), where pos is the
        // index of each set bit
        while (n >= (1 << j)) {
 
            // Check if current bit at
            // pos j is fixed or not
            a += n & (1 << j);
 
            // For next set bit
            j++;
        }
    }
}
 
// Driver Code
int main()
{
    int N = 16, K = 7;
 
    Kmultiples(N, K);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to print the first K
// multiples of N
static void Kmultiples(int n, int k)
{
    int a = n;
 
    for (int i = 1; i <= k; i++)
    {
 
        // Print the value of N*i
        System.out.print(n+ " * " +  i+ " = "
             + a +"\n");
        int j = 0;
 
        // Iterate each bit of N and add
        // Math.pow(2, pos), where pos is the
        // index of each set bit
        while (n >= (1 << j))
        {
 
            // Check if current bit at
            // pos j is fixed or not
            a += n & (1 << j);
 
            // For next set bit
            j++;
        }
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 16, K = 7;
 
    Kmultiples(N, K);
}
}
 
// This code is contributed by Rohit_ranjan


Python3




# Python3 program to implement
# the above approach
           
# Function to print the first K
# multiples of N
def Kmultiples(n, k):
     
    a = n
     
    for i in range(1, k + 1):
         
        # Print the value of N*i
        print("{} * {} = {}".format(n, i, a))
        j = 0
         
        # Iterate each bit of N and add
        # pow(2, pos), where pos is the
        # index of each set bit
        while(n >= (1 << j)):
             
            # Check if current bit at
            # pos j is fixed or not
            a += n & (1 << j)
             
            # For next set bit
            j += 1
             
# Driver Code
N = 16
K = 7
 
Kmultiples(N, K)
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to print the first K
// multiples of N
static void Kmultiples(int n, int k)
{
    int a = n;
 
    for(int i = 1; i <= k; i++)
    {
         
        // Print the value of N*i
        Console.Write(n + " * " + i +
                          " = " + a + "\n");
        int j = 0;
 
        // Iterate each bit of N and add
        // Math.Pow(2, pos), where pos is
        //  the index of each set bit
        while (n >= (1 << j))
        {
             
            // Check if current bit at
            // pos j is fixed or not
            a += n & (1 << j);
 
            // For next set bit
            j++;
        }
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 16, K = 7;
 
    Kmultiples(N, K);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// javascript program to implement
// the above approach
// Function to print the first K
// multiples of N
function Kmultiples(n , k)
{
    var a = n;
 
    for (i = 1; i <= k; i++)
    {
 
        // Print the value of N*i
        document.write(n+ " * " +  i+ " = "
             + a +"<br>");
        var j = 0;
 
        // Iterate each bit of N and add
        // Math.pow(2, pos), where pos is the
        // index of each set bit
        while (n >= (1 << j))
        {
 
            // Check if current bit at
            // pos j is fixed or not
            a += n & (1 << j);
 
            // For next set bit
            j++;
        }
    }
}
 
// Driver Code
var N = 16, K = 7;
 
Kmultiples(N, K);
 
// This code contributed by Princi Singh
</script>


Output: 

16 * 1 = 16
16 * 2 = 32
16 * 3 = 48
16 * 4 = 64
16 * 5 = 80
16 * 6 = 96
16 * 7 = 112

 

Time Complexity: O(Klog2N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments