Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMinimum number of given operation required to convert n to m

Minimum number of given operation required to convert n to m

Given two integers n and m, in a single operation n can be multiplied by either 2 or 3. The task is to convert n to m with a minimum number of given operations. If it is impossible to convert n to m with the given operation then print -1.
Examples: 
 

Input: n = 120, m = 51840 
Output:
120 * 2 * 2 * 2 * 2 * 3 * 3 * 3 = 51840
Input: n = 42, m = 42 
Output:
No operation required.
Input: n = 48, m = 72 
Output: -1 
 

 

Approach: If m is not divisible by n then print -1 as n cannot be converted to m with the given operation. Else we can check if, on dividing, the quotient has only 2 and 3 as prime factors. If yes then the result will be the sum of powers of 2 and 3 else print -1
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// operations required
int minOperations(int n, int m)
{
    if (m % n != 0)
        return -1;
 
    int minOperations = 0;
    int q = m / n;
 
    // Counting all 2s
    while (q % 2 == 0) {
        q = q / 2;
        minOperations++;
    }
 
    // Counting all 3s
    while (q % 3 == 0) {
        q = q / 3;
        minOperations++;
    }
 
    // If q contained only 2 and 3
    // as the only prime factors
    // then it must be 1 now
    if (q == 1)
        return minOperations;
 
    return -1;
}
 
// Driver code
int main()
{
    int n = 120, m = 51840;
    cout << minOperations(n, m);
 
    return 0;
}


Java




// Java implementation of the approach
class GfG {
 
    // Function to return the minimum
    // operations required
    static int minOperations(int n, int m)
    {
        if (m % n != 0)
            return -1;
 
        int minOperations = 0;
        int q = m / n;
 
        // Counting all 2s
        while (q % 2 == 0) {
            q = q / 2;
            minOperations++;
        }
 
        // Counting all 3s
        while (q % 3 == 0) {
            q = q / 3;
            minOperations++;
        }
 
        // If q contained only 2 and 3
        // as the only prime factors
        // then it must be 1 now
        if (q == 1)
            return minOperations;
 
        return -1;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 120, m = 51840;
        System.out.println(minOperations(n, m));
    }
}


Python3




# Python 3 implementation of the approach
 
# Function to return the minimum
# operations required
def minOperations(n, m):
    if (m % n != 0):
        return -1
 
    minOperations = 0
    q = int(m / n)
 
    # Counting all 2s
    while (q % 2 == 0):
        q = int(q / 2)
        minOperations += 1
 
    # Counting all 3s
    while (q % 3 == 0):
        q = int(q / 3)
        minOperations += 1
 
    # If q contained only 2 and 3
    # as the only prime factors
    # then it must be 1 now
    if (q == 1):
        return minOperations
 
    return -1
 
# Driver code
if __name__ == '__main__':
    n = 120
    m = 51840
    print(minOperations(n, m))
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the minimum
// operations required
static int minOperations(int n, int m)
{
    if (m % n != 0)
        return -1;
 
    int minOperations = 0;
    int q = m / n;
 
    // Counting all 2s
    while (q % 2 == 0)
    {
        q = q / 2;
        minOperations++;
    }
 
    // Counting all 3s
    while (q % 3 == 0)
    {
        q = q / 3;
        minOperations++;
    }
 
    // If q contained only 2 and 3
    // as the only prime factors
    // then it must be 1 now
    if (q == 1)
        return minOperations;
 
    return -1;
}
 
// Driver code
public static void Main()
{
    int n = 120, m = 51840;
    Console.WriteLine(minOperations(n, m));
}
}
 
// This code is contributed
// by Akanksha Rai


PHP




<?php
// PHP implementation of the approach
 
// Function to return the minimum
// operations required
function minOperations($n, $m)
{
    if ($m % $n != 0)
        return -1;
 
    $minOperations = 0;
    $q = $m / $n;
 
    // Counting all 2s
    while ($q % 2 == 0)
    {
        $q = $q / 2;
        $minOperations++;
    }
 
    // Counting all 3s
    while ($q % 3 == 0)
    {
        $q = $q / 3;
        $minOperations++;
    }
 
    // If q contained only 2 and 3
    // as the only prime factors
    // then it must be 1 now
    if ($q == 1)
        return $minOperations;
 
    return -1;
}
 
// Driver code
$n = 120; $m = 51840;
echo(minOperations($n, $m));
 
// This code is contributed by Code_Mech
?>


Javascript




<script>
// javascript implementation of the approach
 
    // Function to return the minimum
    // operations required
    function minOperations(n , m) {
        if (m % n != 0)
            return -1;
 
        var minOperations = 0;
        var q = m / n;
 
        // Counting all 2s
        while (q % 2 == 0) {
            q = q / 2;
            minOperations++;
        }
 
        // Counting all 3s
        while (q % 3 == 0) {
            q = q / 3;
            minOperations++;
        }
 
        // If q contained only 2 and 3
        // as the only prime factors
        // then it must be 1 now
        if (q == 1)
            return minOperations;
 
        return -1;
    }
 
    // Driver code
     
        var n = 120, m = 51840;
        document.write(minOperations(n, m));
 
// This code contributed by Rajput-Ji
</script>


Output: 

7

 

Time Complexity: O(log(m/n))

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments