Given a Binary Tree, the task is to print all the co-prime paths of this tree.
A path of a binary tree is said to be a co-prime path if all the nodes of this path are co-prime to each other.
Examples:
Input: 1 / \ 12 11 / / \ 3 4 13 \ / 15 3 Output: 1 11 4 15 1 11 13 3 Explanation: {1, 11, 4, 15} and {1, 11, 13, 3} are coprimes because their GCD is 1. Input: 5 / \ 21 77 / \ \ 61 16 16 \ / 10 3 / 23 Output: 5 21 61 5 77 16 3 Explanation: {5, 21, 61} and {5, 77, 16, 3} are coprimes because their GCD is 1.
Approach: The idea is to traverse the tree and check if all the elements in that path are coprime or not. So, an efficient solution is to generate all the prime factors of the integers by using the Sieve of Eratosthenes. Using hash, store the count of every element which is a prime factor of any of the number in the array. If the element does not contain any common prime factor with other elements, it always forms a co-prime pair with other elements.
Below is the implementation of the above approach:
C++
// C++ program for printing Co-prime // paths of binary Tree #include <bits/stdc++.h> using namespace std; // A Tree node struct Node { int key; struct Node *left, *right; }; // Utility function to create // a new node Node* newNode( int key) { Node* temp = new Node; temp->key = key; temp->left = temp->right = NULL; return (temp); } int N = 1000000; // Vector to store all the // prime numbers vector< int > prime; // Function to store all the // prime numbers in an array void SieveOfEratosthenes() { // Create a boolean array "prime[0..N]" // and initialize all the entries in it // as true. A value in prime[i] // will finally be false if // i is Not a prime, else true. bool check[N + 1]; memset (check, true , sizeof (check)); for ( int p = 2; p * p <= N; p++) { // If prime[p] is not changed, // then it is a prime if (check[p] == true ) { prime.push_back(p); // Update all multiples of p // greater than or equal to // the square of it // numbers which are multiples of p // and are less than p^2 // are already marked. for ( int i = p * p; i <= N; i += p) check[i] = false ; } } } // Function to check whether Path // is Co-prime or not bool isPathCo_Prime(vector< int >& path) { int max = 0; // Iterating through the array // to find the maximum element // in the array for ( auto x : path) { if (max < x) max = x; } for ( int i = 0; i * prime[i] <= max / 2; i++) { int ct = 0; // Incrementing the variable // if any of the value has // a factor for ( auto x : path) { if (x % prime[i] == 0) ct++; } // If not co-prime if (ct > 1) { return false ; } } return true ; } // Function to print a Co-Prime path void printCo_PrimePaths(vector< int >& path) { for ( auto x : path) { cout << x << " " ; } cout << endl; } // Function to find co-prime paths of // binary tree void findCo_PrimePaths( struct Node* root, vector< int >& path) { // Base case if (root == NULL) return ; // Store the value in path vector path.push_back(root->key); // Recursively call for left sub tree findCo_PrimePaths(root->left, path); // Recursively call for right sub tree findCo_PrimePaths(root->right, path); // Condition to check, if leaf node if (root->left == NULL && root->right == NULL) { // Condition to check, // if path co-prime or not if (isPathCo_Prime(path)) { // Print co-prime path printCo_PrimePaths(path); } } // Remove the last element // from the path vector path.pop_back(); } // Function to find Co-Prime paths // In a given binary tree void printCo_PrimePaths( struct Node* node) { // To save all prime numbers SieveOfEratosthenes(); vector< int > path; // Function call findCo_PrimePaths(node, path); } // Driver Code int main() { /* 10 / \ 48 3 / \ 11 37 / \ / \ 7 29 42 19 / 7 */ // Create Binary Tree as shown Node* root = newNode(10); root->left = newNode(48); root->right = newNode(3); root->right->left = newNode(11); root->right->right = newNode(37); root->right->left->left = newNode(7); root->right->left->right = newNode(29); root->right->right->left = newNode(42); root->right->right->right = newNode(19); root->right->right->right->left = newNode(7); // Print Co-Prime Paths printCo_PrimePaths(root); return 0; } |
Java
// Java program for printing Co-prime // paths of binary Tree import java.util.*; class GFG{ // A Tree node static class Node { int key; Node left, right; }; // Utility function to create // a new node static Node newNode( int key) { Node temp = new Node(); temp.key = key; temp.left = temp.right = null ; return (temp); } static int N = 1000000 ; // Vector to store all the // prime numbers static Vector<Integer> prime = new Vector<Integer>(); // Function to store all the // prime numbers in an array static void SieveOfEratosthenes() { // Create a boolean array "prime[0..N]" // and initialize all the entries in it // as true. A value in prime[i] // will finally be false if // i is Not a prime, else true. boolean []check = new boolean [N + 1 ]; Arrays.fill(check, true ); for ( int p = 2 ; p * p <= N; p++) { // If prime[p] is not changed, // then it is a prime if (check[p] == true ) { prime.add(p); // Update all multiples of p // greater than or equal to // the square of it // numbers which are multiples of p // and are less than p^2 // are already marked. for ( int i = p * p; i <= N; i += p) check[i] = false ; } } } // Function to check whether Path // is Co-prime or not static boolean isPathCo_Prime(Vector<Integer> path) { int max = 0 ; // Iterating through the array // to find the maximum element // in the array for ( int x : path) { if (max < x) max = x; } for ( int i = 0 ; i * prime.get(i) <= max / 2 ; i++) { int ct = 0 ; // Incrementing the variable // if any of the value has // a factor for ( int x : path) { if (x % prime.get(i) == 0 ) ct++; } // If not co-prime if (ct > 1 ) { return false ; } } return true ; } // Function to print a Co-Prime path static void printCo_PrimePaths(Vector<Integer> path) { for ( int x : path) { System.out.print(x+ " " ); } System.out.println(); } // Function to find co-prime paths of // binary tree static void findCo_PrimePaths(Node root, Vector<Integer> path) { // Base case if (root == null ) return ; // Store the value in path vector path.add(root.key); // Recursively call for left sub tree findCo_PrimePaths(root.left, path); // Recursively call for right sub tree findCo_PrimePaths(root.right, path); // Condition to check, if leaf node if (root.left == null && root.right == null ) { // Condition to check, // if path co-prime or not if (isPathCo_Prime(path)) { // Print co-prime path printCo_PrimePaths(path); } } // Remove the last element // from the path vector path.remove(path.size()- 1 ); } // Function to find Co-Prime paths // In a given binary tree static void printCo_PrimePaths(Node node) { // To save all prime numbers SieveOfEratosthenes(); Vector<Integer> path = new Vector<Integer>(); // Function call findCo_PrimePaths(node, path); } // Driver Code public static void main(String[] args) { /* 10 / \ 48 3 / \ 11 37 / \ / \ 7 29 42 19 / 7 */ // Create Binary Tree as shown Node root = newNode( 10 ); root.left = newNode( 48 ); root.right = newNode( 3 ); root.right.left = newNode( 11 ); root.right.right = newNode( 37 ); root.right.left.left = newNode( 7 ); root.right.left.right = newNode( 29 ); root.right.right.left = newNode( 42 ); root.right.right.right = newNode( 19 ); root.right.right.right.left = newNode( 7 ); // Print Co-Prime Paths printCo_PrimePaths(root); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program for printing Co-prime # paths of binary Tree # A Tree node class Node: def __init__( self , key): self .key = key self .left = None self .right = None # Utility function to create # a new node def newNode(key): temp = Node(key) return temp N = 1000000 # Vector to store all the # prime numbers prime = [] # Function to store all the # prime numbers in an array def SieveOfEratosthenes(): # Create a boolean array "prime[0..N]" # and initialize all the entries in it # as true. A value in prime[i] # will finally be false if # i is Not a prime, else true. check = [ True for i in range (N + 1 )] p = 2 while (p * p < = N): # If prime[p] is not changed, # then it is a prime if (check[p]): prime.append(p) # Update all multiples of p # greater than or equal to # the square of it numbers # which are multiples of p # and are less than p^2 # are already marked. for i in range (p * p, N + 1 , p): check[i] = False p + = 1 # Function to check whether Path # is Co-prime or not def isPathCo_Prime(path): max = 0 # Iterating through the array # to find the maximum element # in the array for x in path: if ( max < x): max = x i = 0 while (i * prime[i] < = max / / 2 ): ct = 0 # Incrementing the variable # if any of the value has # a factor for x in path: if (x % prime[i] = = 0 ): ct + = 1 # If not co-prime if (ct > 1 ): return False i + = 1 return True # Function to print a Co-Prime path def printCo_PrimePaths(path): for x in path: print (x, end = ' ' ) print () # Function to find co-prime paths of # binary tree def findCo_PrimePaths(root, path): # Base case if (root = = None ): return path # Store the value in path vector path.append(root.key) # Recursively call for left sub tree path = findCo_PrimePaths(root.left, path) # Recursively call for right sub tree path = findCo_PrimePaths(root.right, path) # Condition to check, if leaf node if (root.left = = None and root.right = = None ): # Condition to check, # if path co-prime or not if (isPathCo_Prime(path)): # Print co-prime path printCo_PrimePaths(path) # Remove the last element # from the path vector path.pop() return path # Function to find Co-Prime paths # In a given binary tree def printCo_PrimePath(node): # To save all prime numbers SieveOfEratosthenes() path = [] # Function call path = findCo_PrimePaths(node, path) # Driver code if __name__ = = "__main__" : ''' 10 / \ 48 3 / \ 11 37 / \ / \ 7 29 42 19 / 7 ''' # Create Binary Tree as shown root = newNode( 10 ) root.left = newNode( 48 ) root.right = newNode( 3 ) root.right.left = newNode( 11 ) root.right.right = newNode( 37 ) root.right.left.left = newNode( 7 ) root.right.left.right = newNode( 29 ) root.right.right.left = newNode( 42 ) root.right.right.right = newNode( 19 ) root.right.right.right.left = newNode( 7 ) # Print Co-Prime Paths printCo_PrimePath(root) # This code is contributed by rutvik_56 |
C#
// C# program for printing Co-prime // paths of binary Tree using System; using System.Collections.Generic; class GFG{ // A Tree node class Node { public int key; public Node left, right; }; // Utility function to create // a new node static Node newNode( int key) { Node temp = new Node(); temp.key = key; temp.left = temp.right = null ; return (temp); } static int N = 1000000; // List to store all the // prime numbers static List< int > prime = new List< int >(); // Function to store all the // prime numbers in an array static void SieveOfEratosthenes() { // Create a bool array "prime[0..N]" // and initialize all the entries in it // as true. A value in prime[i] // will finally be false if // i is Not a prime, else true. bool []check = new bool [N + 1]; for ( int i=0;i<=N;i++) check[i] = true ; for ( int p = 2; p * p <= N; p++) { // If prime[p] is not changed, // then it is a prime if (check[p] == true ) { prime.Add(p); // Update all multiples of p // greater than or equal to // the square of it // numbers which are multiples of p // and are less than p^2 // are already marked. for ( int i = p * p; i <= N; i += p) check[i] = false ; } } } // Function to check whether Path // is Co-prime or not static bool isPathCo_Prime(List< int > path) { int max = 0; // Iterating through the array // to find the maximum element // in the array foreach ( int x in path) { if (max < x) max = x; } for ( int i = 0; i * prime[i] <= max / 2; i++) { int ct = 0; // Incrementing the variable // if any of the value has // a factor foreach ( int x in path) { if (x % prime[i] == 0) ct++; } // If not co-prime if (ct > 1) { return false ; } } return true ; } // Function to print a Co-Prime path static void printCo_PrimePaths(List< int > path) { foreach ( int x in path) { Console.Write(x+ " " ); } Console.WriteLine(); } // Function to find co-prime paths of // binary tree static void findCo_PrimePaths(Node root, List< int > path) { // Base case if (root == null ) return ; // Store the value in path vector path.Add(root.key); // Recursively call for left sub tree findCo_PrimePaths(root.left, path); // Recursively call for right sub tree findCo_PrimePaths(root.right, path); // Condition to check, if leaf node if (root.left == null && root.right == null ) { // Condition to check, // if path co-prime or not if (isPathCo_Prime(path)) { // Print co-prime path printCo_PrimePaths(path); } } // Remove the last element // from the path vector path.RemoveAt(path.Count-1); } // Function to find Co-Prime paths // In a given binary tree static void printCo_PrimePaths(Node node) { // To save all prime numbers SieveOfEratosthenes(); List< int > path = new List< int >(); // Function call findCo_PrimePaths(node, path); } // Driver Code public static void Main(String[] args) { /* 10 / \ 48 3 / \ 11 37 / \ / \ 7 29 42 19 / 7 */ // Create Binary Tree as shown Node root = newNode(10); root.left = newNode(48); root.right = newNode(3); root.right.left = newNode(11); root.right.right = newNode(37); root.right.left.left = newNode(7); root.right.left.right = newNode(29); root.right.right.left = newNode(42); root.right.right.right = newNode(19); root.right.right.right.left = newNode(7); // Print Co-Prime Paths printCo_PrimePaths(root); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript program for printing // Co-prime paths of binary Tree // A Tree node class Node { constructor(key) { this .left = null ; this .right = null ; this .key = key; } } // Utility function to create // a new node function newNode(key) { let temp = new Node(key); return (temp); } let N = 1000000; // Vector to store all the // prime numbers let prime = []; // Function to store all the // prime numbers in an array function SieveOfEratosthenes() { // Create a boolean array "prime[0..N]" // and initialize all the entries in it // as true. A value in prime[i] // will finally be false if // i is Not a prime, else true. let check = new Array(N + 1); check.fill( true ); for (let p = 2; p * p <= N; p++) { // If prime[p] is not changed, // then it is a prime if (check[p] == true ) { prime.push(p); // Update all multiples of p // greater than or equal to // the square of it // numbers which are multiples of p // and are less than p^2 // are already marked. for (let i = p * p; i <= N; i += p) check[i] = false ; } } } // Function to check whether Path // is Co-prime or not function isPathCo_Prime(path) { let max = 0; // Iterating through the array // to find the maximum element // in the array for (let x = 0; x < path.length; x++) { if (max < path[x]) max = path[x]; } for (let i = 0; i * prime[i] <= parseInt(max / 2, 10); i++) { let ct = 0; // Incrementing the variable // if any of the value has // a factor for (let x = 0; x < path.length; x++) { if (path[x] % prime[i] == 0) ct++; } // If not co-prime if (ct > 1) { return false ; } } return true ; } // Function to print a Co-Prime path function printCoPrimePaths(path) { for (let x = 0; x < path.length; x++) { document.write(path[x]+ " " ); } document.write( "</br>" ); } // Function to find co-prime paths of // binary tree function findCo_PrimePaths(root, path) { // Base case if (root == null ) return ; // Store the value in path vector path.push(root.key); // Recursively call for left sub tree findCo_PrimePaths(root.left, path); // Recursively call for right sub tree findCo_PrimePaths(root.right, path); // Condition to check, if leaf node if (root.left == null && root.right == null ) { // Condition to check, // if path co-prime or not if (isPathCo_Prime(path)) { // Print co-prime path printCoPrimePaths(path); } } // Remove the last element // from the path vector path.pop(); } // Function to find Co-Prime paths // In a given binary tree function printCo_PrimePaths(node) { // To save all prime numbers SieveOfEratosthenes(); let path = []; // Function call findCo_PrimePaths(node, path); } /* 10 / \ 48 3 / \ 11 37 / \ / \ 7 29 42 19 / 7 */ // Create Binary Tree as shown let root = newNode(10); root.left = newNode(48); root.right = newNode(3); root.right.left = newNode(11); root.right.right = newNode(37); root.right.left.left = newNode(7); root.right.left.right = newNode(29); root.right.right.left = newNode(42); root.right.right.right = newNode(19); root.right.right.right.left = newNode(7); // Print Co-Prime Paths printCo_PrimePaths(root); </script> |
10 3 11 7 10 3 11 29 10 3 37 19 7
Time Complexity: O(n*log(log(n)))
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!