Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICeiling of every element in same array

Ceiling of every element in same array

Given an array of integers, find the closest greater or same element for every element. If all elements are smaller for an element, then print -1

Examples: 

Input : arr[] = {10, 5, 11, 10, 20, 12} 
Output : 10 10 12 10 -1 20 
Note that there are multiple occurrences of 10, so ceiling of 10 is 10 itself.

Input : arr[] = {6, 11, 7, 8, 20, 12} 
Output : 7 12 8 11 -1 20  

A simple solution is to run two nested loops. We pick an outer element one by one. For every picked element, we traverse remaining array and find closest greater element. Time complexity of this solution is O(n*n)

Algorithm:

  1.    Create a vector to store the result.
  2.    Loop through every element of the array from i = 0 to n-1.

                 a.  Initialize the variable ‘closest’ as INT_MAXLoop through all elements of the array from j = 0 to n-1

                       i.  If i and j are the same, continue to the next iteration of the loop

                       ii. If arr[j] is greater than or equal to arr[i], update the variable closest with minimum of closest and arr[j]      

                 b. If closest is still INT_MAX, push -1 to the result vector else push closest
   

      3.    Return the result vector
      4.    In the main function:

              Create an array of integers arr[] of size n
              Initialize n as the size of the array arr[]
              Call the closestGreaterOrSame function and store the result in a vector called ‘result’
              Loop through the result vector and print the elements

Below is the implementation of the approach:

C++




// C++ program to find the closest greater or same element
// for every element
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find closest greater or same element for
// every element of array
vector<int> closestGreaterOrSame(int arr[], int n) {
    // Vector to store result
    vector<int> res;
 
    // Loop through every element of the array
    for (int i = 0; i < n; i++) {
          int closest = INT_MAX;
        // Loop through all elements to find closest
        // greater or same element
        for (int j = 0; j < n; j++) {
            // if same leave it and continue
              if(i == j)
              continue;
           
            // If a greater or same element is found, update
              // the closest variable as minimum
            if (arr[j] >= arr[i]) {
                closest = min(closest, arr[j]);
            }
        }
         
          // If no greater or same element is found, add -1 to the result vector
          if(    closest == INT_MAX)
              res.push_back(-1);
          else // push the closest element to res for ith one
            res.push_back(closest);
    }
 
    // Return the result vector
    return res;
}
 
// Driver code
int main()
{
    // Sample input
    int arr[] = { 6, 11, 7, 8, 20, 12 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Find closest greater or same element for every
    // element of the array
    vector<int> result = closestGreaterOrSame(arr, n);
 
    // Print the result
    for (int i = 0; i < result.size(); i++)
        cout << result[i] << " ";
    cout << endl;
 
    return 0;
}


Java




// Java program to find the closest greater or same element
// for every element
 
import java.util.*;
 
public class GFG {
    // Function to find closest greater or same element for
    // every element of array
    public static ArrayList<Integer>
    closestGreaterOrSame(int arr[], int n)
    {
        // ArrayList to store result
        ArrayList<Integer> res = new ArrayList<Integer>();
 
        // Loop through every element of the array
        for (int i = 0; i < n; i++) {
            int closest = Integer.MAX_VALUE;
            // Loop through all elements to find closest
            // greater or same element
            for (int j = 0; j < n; j++) {
                // if same leave it and continue
                if (i == j)
                    continue;
 
                // If a greater or same element is found,
                // update the closest variable as minimum
                if (arr[j] >= arr[i]) {
                    closest = Math.min(closest, arr[j]);
                }
            }
 
            // If no greater or same element is found, add
            // -1 to the result ArrayList
            if (closest == Integer.MAX_VALUE)
                res.add(-1);
            else // push the closest element to res for ith
                 // one
                res.add(closest);
        }
 
        // Return the result ArrayList
        return res;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        // Sample input
        int arr[] = { 6, 11, 7, 8, 20, 12 };
        int n = arr.length;
 
        // Find closest greater or same element for every
        // element of the array
        ArrayList<Integer> result
            = closestGreaterOrSame(arr, n);
 
        // Print the result
        for (int i = 0; i < result.size(); i++)
            System.out.print(result.get(i) + " ");
        System.out.println();
    }
}


Python3




# Function to find closest greater or
# same element for every element of array
def closestGreaterOrSame(arr):
    n = len(arr)
    # Array to store the result
    res = []
    # Loop through every element of the array
    for i in range(n):
        closest = float('inf')
        # Loop through all elements to
        # find closest greater or same element
        for j in range(n):
            # if same, skip and continue to the next element
            if i == j:
                continue
            # If a greater or same element is found
            # update the closest variable as minimum
            if arr[j] >= arr[i]:
                closest = min(closest, arr[j])
        # If no greater or same element is found
        # add -1 to the result array
        if closest == float('inf'):
            res.append(-1)
        else# push the closest element to the result array for the ith element
            res.append(closest)
    # Return the result array
    return res
 
 
# Sample input
arr = [6, 11, 7, 8, 20, 12]
# Find closest greater or
# same element for every element of the array
result = closestGreaterOrSame(arr)
# Print the result
print(" ".join(map(str, result)))
 
 
# by phasing17


C#




// C# program to find the closest greater or same element
// for every element
 
 
using System;
using System.Collections.Generic;
 
class GFG {
    public static List<int>
    closestGreaterOrSame(int[] arr, int n)
    {
        // List to store result
        List<int> res = new List<int>();
 
        // Loop through every element of the array
        for (int i = 0; i < n; i++) {
            int closest = int.MaxValue;
            // Loop through all elements to find closest
            // greater or same element
            for (int j = 0; j < n; j++) {
                // if same leave it and continue
                if (i == j)
                    continue;
 
                // If a greater or same element is found,
                // update the closest variable as minimum
                if (arr[j] >= arr[i]) {
                    closest = Math.Min(closest, arr[j]);
                }
            }
 
            // If no greater or same element is found, add
            // -1 to the result List
            if (closest == int.MaxValue)
                res.Add(-1);
            else // push the closest element to res for ith
                // one
                res.Add(closest);
        }
 
        // Return the result List
        return res;
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        // Sample input
        int[] arr = { 6, 11, 7, 8, 20, 12 };
        int n = arr.Length;
 
        // Find closest greater or same element for every
        // element of the array
        List<int> result
            = closestGreaterOrSame(arr, n);
 
        // Print the result
        for (int i = 0; i < result.Count; i++)
            Console.WriteLine(result[i] + " ");
        Console.WriteLine();
    }
}


Javascript




// Function to find closest greater or
// same element for every element of array
function closestGreaterOrSame(arr) {
    const n = arr.length;
    // Array to store the result
    const res = [];
    // Loop through every element of the array
    for (let i = 0; i < n; i++) {
        let closest = Infinity;
        // Loop through all elements to
        // find closest greater or same element
        for (let j = 0; j < n; j++) {
            // if same, skip and continue to the next element
            if (i === j)
                continue;
            // If a greater or same element is found
            // update the closest variable as minimum
            if (arr[j] >= arr[i]) {
                closest = Math.min(closest, arr[j]);
            }
        }
        // If no greater or same element is found
        // add -1 to the result array
        if (closest === Infinity)
            res.push(-1);
        else // push the closest element to the result array for the ith element
            res.push(closest);
    }
    // Return the result array
    return res;
}
// Sample input
const arr = [6, 11, 7, 8, 20, 12];
// Find closest greater or
// same element for every element of the array
const result = closestGreaterOrSame(arr);
// Print the result
console.log(result.join(" "));


Output

7 12 8 11 -1 20 




Time Complexity: O(N*N) as two nested loops are executing. Here, N is size of the input array.

Space Complexity: O(1) as no extra space has been used. Note here res vector space is ignored as it is the resultnt vector.

Another Approach using Hashing:
Solution is to store the answer for each element in a map (say res). And this can be done by using second map (say m) which will store frequency of elements and automatically sort it according to keys. Then traverse map m and find answer to each key and store answer in map res[key]. 

C++




// C++ implementation to find the closest smaller or same
// element for every element.
 
#include <bits/stdc++.h>
using namespace std;
 
map<int, int> m; // initialise two maps
map<int, int> res;
 
void printPrevGreater(int arr[], int n)
{
    for (int i = 0; i < n; i++) {
        m[arr[i]]++; // Add elements to map to store count
    }
 
    int c = 0;
    int prev;
    int f = 0;
    for (auto i = m.begin(); i != m.end(); i++) {
 
        if (f == 1) {
            res[prev] = i->first;// check if previous element have
                           // no similar element ,store next
                           // element occurring in map in
                           // res[previous_element]
            f = 0;
            c++;
        }
 
        if (i->second == 1) { // if current element count is
                              // 1 then its greater value
                              // will be map's next element
            f = 1;
            prev = i->first;
        }
 
        else if (i->second
                 > 1) { // if current element count is
                        // greater than 1, it means there are
                        // similar elements
            res[i->first] = i->first;
            c++;
            f = 0;
        }
    }
 
    if (c < n) {
        res[prev] = -1; // checks whether the value for the last
                  // element in map m is stores in res or
                  // not. if not set value to -1 as no other
                  // greater element is there.
    }
 
    for (int i = 0; i < n; i++) { // print the elements
        cout << res[arr[i]] << " ";
    }
}
 
int main()
{
    int arr[] = { 6, 11, 7, 8, 20, 12 };
    int n = sizeof(arr) / sizeof(arr[0]);
    printPrevGreater(arr, n);
    return 0;
}


Java




/*package whatever //do not write package name here */
 
import java.io.*;
import java.util.*;
 
class GFG
{
   
    // Java implementation to find the closest smaller or same
// element for every element.
static Map<Integer,Integer> m = new TreeMap<>(); // initialise two maps
static Map<Integer,Integer> res = new TreeMap<>();
 
static void printPrevGreater(int arr[], int n)
{
    for (int i = 0; i < n; i++) {
        if(m.containsKey(arr[i])){
            m.put(arr[i], m.get(arr[i])+1);
        }
        else m.put(arr[i],1); // Add elements to map to store count
    }
 
    int c = 0;
    int prev = 0;
    int f = 0;
    for (Map.Entry<Integer, Integer>entry : m.entrySet()) {
 
        if (f == 1) {
            res.put(prev,entry.getKey());// check if previous element have
                           // no similar element ,store next
                           // element occurring in map in
                           // res[previous_element]
            f = 0;
            c++;
        }
 
        if (entry.getValue() == 1) { // if current element count is
                              // 1 then its greater value
                              // will be map's next element
            f = 1;
            prev = entry.getKey();
        }
 
        else if (entry.getValue() > 1) { // if current element count is
                        // greater than 1, it means there are
                        // similar elements
            res.put(entry.getKey() , entry.getKey());
            c++;
            f = 0;
        }
    }
 
    if (c < n) {
        res.put(prev , -1); // checks whether the value for the last
                  // element in map m is stores in res or
                  // not. if not set value to -1 as no other
                  // greater element is there.
    }
 
    for (int i = 0; i < n; i++) { // print the elements
        System.out.printf("%d ",res.get(arr[i]));
    }
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 6, 11, 7, 8, 20, 12 };
    int n = arr.length;
    printPrevGreater(arr, n);
}
}
 
// This code is contributed by shinjanpatra


Python3




# Python3 implementation to find the closest smaller or
# same element for every element.
 
m = {};     # initialise two maps
res = {};
 
def printPrevGreater(arr, n):
    for i in range(n):
        if arr[i] not in m:
            m[arr[i]] = 0
        m[arr[i]] += 1      # Add elements to map to store count
     
 
    c = 0;
    f = 0;
    for i in sorted(m) :
 
        if (f == 1) :
            # check if previous element have
            # no similar element ,store next
            # element occurring in map in
            # res[previous_element]
            res[prev] = int(i)
            f = 0;
            c += 1;
 
        if (m[i] == 1):
            # if current element count is
            # 1 then its greater value
            # will be map's next element
            f = 1;
            prev = int(i);
         
        elif (m[i] > 1):
           
            # if current element count is
            # greater than 1, it means
            # there are similar elements
            res[int(i)] = int(i);
            c += 1
            f = 0;
         
    if (c < n):
        res[prev] = -1;
        # checks whether the value for the last
        # element in map m is stores in res or
        # not. if not set value to -1 as no other
        # greater element is there.
    for i in range(n):       # print the elements
        print(res[arr[i]], end = " ");
 
# Driver Code
arr = [ 6, 11, 7, 8, 20, 12 ];
n = len(arr);
printPrevGreater(arr, n);
 
# This code is contributed by phasing17


C#




// C# implementation to find the closest smaller or same
// element for every element.
 
using System;
using System.Collections.Generic;
 
class GFG
{
// initialise two maps
static SortedDictionary<int, int> m =
            new SortedDictionary<int, int>();
static SortedDictionary<int, int> res =
            new SortedDictionary<int, int>();
 
 
static void printPrevGreater(int[] arr, int n)
{
    for (int i = 0; i < n; i++) {
        if(m.ContainsKey(arr[i])){
            m[arr[i]] += 1;
        }
        else m[arr[i]] = 1; // Add elements to map to store count
    }
 
    int c = 0;
    int prev = 0;
    int f = 0;
    foreach (var entry in m) {
 
        if (f == 1) {
            res[prev] = entry.Key;// check if previous element have
                           // no similar element ,store next
                           // element occurring in map in
                           // res[previous_element]
            f = 0;
            c++;
        }
 
        if (entry.Value == 1) { // if current element count is
                              // 1 then its greater value
                              // will be map's next element
            f = 1;
            prev = entry.Key;
        }
 
        else if (entry.Value > 1) { // if current element count is
                        // greater than 1, it means there are
                        // similar elements
            res[entry.Key] = entry.Key;
            c++;
            f = 0;
        }
    }
 
    if (c < n) {
        res[prev] = -1; // checks whether the value for the last
                  // element in map m is stores in res or
                  // not. if not set value to -1 as no other
                  // greater element is there.
    }
 
    for (int i = 0; i < n; i++) { // print the elements
        Console.Write(res[arr[i]] + " ");
    }
}
 
// Driver Code
public static void Main(string[] args)
{
    int[] arr = { 6, 11, 7, 8, 20, 12 };
    int n = arr.Length;
    printPrevGreater(arr, n);
}
}
 
// This code is contributed by phasing17


Javascript




// JavaScript implementation to find the closest smaller or
// same element for every element.
 
let m = {}; // initialise two maps
let res = {};
 
function printPrevGreater(arr, n)
{
    for (var i = 0; i < n; i++) {
        if (!m.hasOwnProperty(arr[i]))
            m[arr[i]] = 0;
        m[arr[i]]++; // Add elements to map to store count
    }
 
    let c = 0;
    let prev;
    let f = 0;
    for (const i in m) {
 
        if (f == 1) {
            res[prev] = parseInt(
                i); // check if previous element have
                    // no similar element ,store next
                    // element occurring in map in
                    // res[previous_element]
            f = 0;
            c++;
        }
 
        if (m[i] == 1) { // if current element count is
                         // 1 then its greater value
                         // will be map's next element
            f = 1;
            prev = parseInt(i);
        }
 
        else if (m[i] > 1) { // if current element count is
                             // greater than 1, it means
                             // there are similar elements
            res[parseInt(i)] = parseInt(i);
            c++;
            f = 0;
        }
    }
 
    if (c < n) {
        res[prev]
            = -1; // checks whether the value for the last
                  // element in map m is stores in res or
                  // not. if not set value to -1 as no other
                  // greater element is there.
    }
 
    for (var i = 0; i < n; i++) { // print the elements
        process.stdout.write(res[arr[i]] + " ");
    }
}
 
// Driver Code
let arr = [ 6, 11, 7, 8, 20, 12 ];
let n = arr.length;
printPrevGreater(arr, n);
 
// This code is contributed by phasing17


Output

7 12 8 11 -1 20 




Time Complexity: O(n log(n)).
Auxiliary Space: O(n)

A better solution is to sort the array and create a sorted copy, then do binary search for floor. We traverse the array, for every element we search for the first greater element. In C++ upper_bound() serves this purpose.

Below is the implementation of the above approach

C++




// C++ implementation of efficient algorithm to find
// floor of every element
#include <bits/stdc++.h>
using namespace std;
 
// Prints greater elements on left side of every element
void printPrevGreater(int arr[], int n)
{
    if (n == 1) {
        cout << "-1";
        return;
    }
 
    // Create a sorted copy of arr[]
    vector<int> v(arr, arr + n);
    sort(v.begin(), v.end());
 
    // Traverse through arr[] and do binary search for
    // every element.
    for (int i = 0; i < n; i++) {
 
        // Find the first element that is greater than
        // the given element
        auto it = upper_bound(v.begin(), v.end(), arr[i]);
 
        // Since arr[i] also exists in array, *(it-1)
        // will be same as arr[i]. Let us check *(it-2)
        // is also same as arr[i]. If true, then arr[i]
        // exists twice in array, so ceiling is same
        // same as arr[i]
        if ((it - 1) != v.begin() && *(it - 2) == arr[i]) {
 
            // If next element is also same, then there
            // are multiple occurrences, so print it
            cout << arr[i] << " ";
        }
 
        else if (it != v.end())
            cout << *it << " ";
        else
            cout << -1 << " ";
    }
}
 
/* Driver program to test insertion sort */
int main()
{
    int arr[] = {10, 5, 11, 10, 20, 12};
    int n = sizeof(arr) / sizeof(arr[0]);
    printPrevGreater(arr, n);
    return 0;
}


Java




// Java implementation of efficient algorithm to find
// floor of every element
import java.util.Arrays;
 
class GFG
{
 
    // Prints greater elements on left side of every element
    static void printPrevGreater(int arr[], int n)
    {
        if (n == 1)
        {
            System.out.println("-1");
            return;
        }
 
        // Create a sorted copy of arr[]
        int v[] = Arrays.copyOf(arr, arr.length);
        Arrays.sort(v);
 
        // Traverse through arr[] and do binary search for
        // every element.
        for (int i = 0; i < n; i++)
        {
 
            // Find the first element that is greater than
            // the given element
            int it = Arrays.binarySearch(v,arr[i]);
            it++;
 
            // Since arr[i] also exists in array, *(it-1)
            // will be same as arr[i]. Let us check *(it-2)
            // is also same as arr[i]. If true, then arr[i]
            // exists twice in array, so ceiling is same
            // same as arr[i]
            if ((it - 1) != 0 && v[it - 2] == arr[i])
            {
 
                // If next element is also same, then there
                // are multiple occurrences, so print it
                System.out.print(arr[i] + " ");
            }
            else if (it != v.length)
                System.out.print(v[it] + " ");
            else
                System.out.print(-1 + " ");
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = {10, 5, 11, 10, 20, 12};
        int n = arr.length;
        printPrevGreater(arr, n);
    }
}
 
// This code is contributed by
// Rajnis09


Python3




# Python implementation of efficient algorithm
# to find floor of every element
import bisect
 
# Prints greater elements on left side of every element
def printPrevGreater(arr, n):
 
    if n == 1:
        print("-1")
        return
     
    # Create a sorted copy of arr[]
    v = list(arr)
    v.sort()
 
    # Traverse through arr[] and do binary search for
    # every element
    for i in range(n):
 
        # Find the location of first element that
        # is greater than the given element
        it = bisect.bisect_right(v, arr[i])
 
        # Since arr[i] also exists in array, v[it-1]
        # will be same as arr[i]. Let us check v[it-2]
        # is also same as arr[i]. If true, then arr[i]
        # exists twice in array, so ceiling is same
        # same as arr[i]
        if (it-1) != 0 and v[it-2] == arr[i]:
 
            # If next element is also same, then there
            # are multiple occurrences, so print it
            print(arr[i], end=" ")
         
        elif it <= n-1:
            print(v[it], end=" ")
         
        else:
            print(-1, end=" ")
 
 
# Driver code
if __name__ == "__main__":
    arr = [10, 5, 11, 10, 20, 12]
    n = len(arr)
    printPrevGreater(arr, n)
 
# This code is contributed by
# sanjeev2552


C#




// C# implementation of efficient algorithm
// to find floor of every element
using System;
     
class GFG
{
 
    // Prints greater elements on left side
    // of every element
    static void printPrevGreater(int []arr, int n)
    {
        if (n == 1)
        {
            Console.Write("-1");
            return;
        }
 
        // Create a sorted copy of arr[]
        int []v = new int[arr.GetLength(0)];
        Array.Copy(arr, v, arr.GetLength(0));
        Array.Sort(v);
 
        // Traverse through arr[] and
        // do binary search for every element.
        for (int i = 0; i < n; i++)
        {
 
            // Find the first element that is
            // greater than the given element
            int it = Array.BinarySearch(v, arr[i]);
            it++;
 
            // Since arr[i] also exists in array, *(it-1)
            // will be same as arr[i]. Let us check *(it-2)
            // is also same as arr[i]. If true, then arr[i]
            // exists twice in array, so ceiling is same
            // same as arr[i]
            if ((it - 1) != 0 && v[it - 2] == arr[i])
            {
 
                // If next element is also same, then there
                // are multiple occurrences, so print it
                Console.Write(arr[i] + " ");
            }
            else if (it != v.Length)
                Console.Write(v[it] + " ");
            else
                Console.Write(-1 + " ");
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int []arr = {10, 5, 11, 10, 20, 12};
        int n = arr.Length;
        printPrevGreater(arr, n);
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




// JavaScript implementation of efficient algorithm to find
// floor of every element
 
// Function to implement upper_bound
function upper_bound(arr, N, X)
{
    let mid;
  
    // Initialise starting index and
    // ending index
    let low = 0;
    let high = N;
  
    // Till low is less than high
    while (low < high) {
        // Find the middle index
        mid = low + Math.floor((high - low) / 2);
  
        // If X is greater than or equal
        // to arr[mid] then find
        // in right subarray
        if (X >= arr[mid]) {
            low = mid + 1;
        }
  
        // If X is less than arr[mid]
        // then find in left subarray
        else {
            high = mid - 1;
        }
    }
    
    // if X is greater than arr[n-1]
    if(low < N && arr[low] <= X) {
       low++;
    }
  
    // Return the upper_bound index
    return low;
}
 
// Prints greater elements on left side of every element
function printPrevGreater(arr, n)
{
    if (n == 1) {
        process.stdout.write("-1");
        return;
    }
 
    // Create a sorted copy of arr[]
    let v = [...arr];
    v.sort();
 
    // Traverse through arr[] and do binary search for
    // every element.
    for (var i = 0; i < n; i++) {
 
        // Find the first element that is greater than
        // the given element
        let it = upper_bound(v, n, arr[i]);
 
        // Since arr[i] also exists in array, *(it-1)
        // will be same as arr[i]. Let us check *(it-2)
        // is also same as arr[i]. If true, then arr[i]
        // exists twice in array, so ceiling is same
        // same as arr[i]
        if ((it - 1) != 0 && v[it - 2] === arr[i]) {
 
            // If next element is also same, then there
            // are multiple occurrences, so print it
            process.stdout.write(arr[i] + " ");
        }
 
        else if (it < n)
            process.stdout.write(v[it] + " ");
        else
            process.stdout.write("-1");
    }
}
 
/* Driver program to test insertion sort */
let arr = [10, 5, 11, 10, 20, 12];
let n = arr.length;
printPrevGreater(arr, n);
 
 
 
// This code is contributed by phasing17


Output

10 10 12 10 -1 20 




Time Complexity : O(n Log n) 
Auxiliary Space : O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments