Saturday, January 18, 2025
Google search engine
HomeData Modelling & AICount pairs of elements such that number of set bits in their...

Count pairs of elements such that number of set bits in their OR is B[i]

Given two arrays A[] and B[] of N elements each. The task is to find the number of index pairs (i, j) such that i ? j and F(A[i] | A[j]) = B[j] where F(X) is the count of set bits in the binary representation of X.
Examples 
 

Input: A[] = {5, 3, 2, 4, 6, 1}, B[] = {2, 2, 1, 4, 2, 3} 
Output:
All possible pairs are (5, 5), (3, 3), (2, 2), 
(2, 6), (4, 6), (6, 6) and (6, 1).
Input: A[] = {4, 3, 5, 6, 7}, B[] = {1, 3, 2, 4, 5} 
Output:
 

 

Approach: Iterate through all the possible pairs (i, j) and check the count of set bits in their OR value. If the count is equal to B[j] then increment the count.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of pairs
// which satisfy the given condition
int solve(int A[], int B[], int n)
{
    int cnt = 0;
 
    for (int i = 0; i < n; i++)
        for (int j = i; j < n; j++)
 
            // Check if the count of set bits
            // in the OR value is B[j]
            if (__builtin_popcount(A[i] | A[j]) == B[j]) {
                cnt++;
            }
 
    return cnt;
}
 
// Driver code
int main()
{
    int A[] = { 5, 3, 2, 4, 6, 1 };
    int B[] = { 2, 2, 1, 4, 2, 3 };
    int size = sizeof(A) / sizeof(A[0]);
 
    cout << solve(A, B, size);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count of pairs
// which satisfy the given condition
static int solve(int A[], int B[], int n)
{
    int cnt = 0;
 
    for (int i = 0; i < n; i++)
        for (int j = i; j < n; j++)
 
            // Check if the count of set bits
            // in the OR value is B[j]
            if (Integer.bitCount(A[i] | A[j]) == B[j])
            {
                cnt++;
            }
 
    return cnt;
}
 
// Driver code
public static void main(String args[])
{
    int A[] = { 5, 3, 2, 4, 6, 1 };
    int B[] = { 2, 2, 1, 4, 2, 3 };
    int size = A.length;
 
    System.out.println(solve(A, B, size));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
 
# Function to return the count of pairs
# which satisfy the given condition
def solve(A, B, n) :
 
    cnt = 0;
    for i in range(n) :
        for j in range(i, n) :
 
            # Check if the count of set bits
            # in the OR value is B[j]
            if (bin(A[i] | A[j]).count('1') == B[j]) :
                cnt += 1;
             
    return cnt
 
 
# Driver code
if __name__ == "__main__" :
 
    A = [ 5, 3, 2, 4, 6, 1 ];
    B = [ 2, 2, 1, 4, 2, 3 ];
    size = len(A);
 
    print(solve(A, B, size));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the count of pairs
// which satisfy the given condition
static int solve(int []A, int []B, int n)
{
    int cnt = 0;
 
    for (int i = 0; i < n; i++)
        for (int j = i; j < n; j++)
 
            // Check if the count of set bits
            // in the OR value is B[j]
            if (bitCount(A[i] | A[j]) == B[j])
            {
                cnt++;
            }
 
    return cnt;
}
 
static int bitCount(long x)
{
    // To store the count
    // of set bits
    int setBits = 0;
    while (x != 0)
    {
        x = x & (x - 1);
        setBits++;
    }
    return setBits;
}
 
// Driver code
public static void Main(String []args)
{
    int []A = { 5, 3, 2, 4, 6, 1 };
    int []B = { 2, 2, 1, 4, 2, 3 };
    int size = A.Length;
 
    Console.WriteLine(solve(A, B, size));
}
}
 
/* This code is contributed by PrinciRaj1992 */


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the count of pairs
// which satisfy the given condition
function solve(A,B,n)
{
    let cnt = 0;
   
    for (let i = 0; i < n; i++)
        for (let j = i; j < n; j++)
   
            // Check if the count of set bits
            // in the OR value is B[j]
            if (bitCount(A[i] | A[j]) == B[j])
            {
                cnt++;
            }
   
    return cnt;
}
 
function bitCount(x)
{
    // To store the count
    // of set bits
    let setBits = 0;
    while (x != 0)
    {
        x = x & (x - 1);
        setBits++;
    }
    return setBits;
}
 
 
// Driver code
let A=[5, 3, 2, 4, 6, 1 ];
let B=[2, 2, 1, 4, 2, 3 ];
let size = A.length;
document.write(solve(A, B, size));
 
 
// This code is contributed by rag2127
 
</script>


Output: 

7

 

Time Complexity: O(N2)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments