Given a dice with m-faces. The first face of the dice contains a dot, the second one contains two dots, and so on, the m-th face contains m dots. Each face appears with a probability . Our task is to calculate the expected maximum number of dots after tossing the dice times.
Examples:
Input: 2 2
Output: 1.750000000000
Here the dice includes {1, 2}.
So, the sample space of throwing the dice two times =
{(1, 2), (1, 1), (2, 1), (2, 2)}
For (1, 2)–> maximum=2
For (1, 1)–> maximum=1
For (2, 2)–> maximum=2
For (2, 1)–> maximum=2
The probability of each outcome is 0.25,
that is, expectation equals to
(2+1+2+2)*(0.25) = 7/4 = 1.750000000000Input: 6 3
Output: 4.958333333333
Approach:
The key observation in this problem is that no. of times a number can occur a maximum of times depending upon its previous number.
For i-th number, it will be .
Take m = 6, n = 2 as an instance.
Total numbers with a maximum =6 are equal to .
The total numbers with a maximum, 5 are equal to .
Similarly, we can find out for 4,3,2, and 1.
6 6 6 6 6 6
5 5 5 5 5 6
4 4 4 4 5 6
3 3 3 4 5 6
2 2 3 4 5 6
1 2 3 4 5 6
Enumerate the maximum number, the distribution will be an n-dimensional super-cube with m-length-side. Each layer will be a large cube minus a smaller cube.
So, our answer will be the sum of all i-th elements from 1 to m given by:
Calculating may cause overflow, so we could move the divisor into the sum and calculate instead.
C++
// CPP program for above implementation #include <bits/stdc++.h> using namespace std; // Function find the maximum expectation double expect( double m, double n) { double ans = 0.0, i; for (i = m; i; i--) // formula to find the maximum number and // sum of maximum numbers ans += ( pow (i / m, n) - pow ((i - 1) / m, n)) * i; return ans; } // Driver code int main() { double m = 6, n = 3; cout << expect(m, n); return 0; } |
Java
// Java program for above implementation class GFG { // Function find the maximum expectation static double expect( double m, double n) { double ans = 0.0 , i; for (i = m; i > 0 ; i--) // formula to find the maximum number // and sum of maximum numbers ans += (Math.pow(i / m, n) - Math.pow((i - 1 ) / m, n)) * i; return ans; } // Driver code public static void main(String[] args) { double m = 6 , n = 3 ; System.out.println(String.format( "%.5f" , expect(m, n))); } } // This code is contributed by mits |
Python3
# Python3 program for finding maximum # number of dots after throwing a # dice N times. # Function to find the maximum # expectation def expect(m,n) : ans = 0.0 i = m while (i): # formula to find the maximum # number and # sum of maximum numbers ans + = ( pow (i / m, n) - pow ((i - 1 ) / m, n)) * i i - = 1 return ans # Driver code if __name__ = = "__main__" : # multiple assignments m,n = 6 , 3 # function calling print (expect(m,n)) |
C#
// C# program for above implementation using System; class GFG { // Function find the maximum expectation static double expect( double m, double n) { double ans = 0.0, i; for (i = m; i > 0; i--) // formula to find the maximum number // and sum of maximum numbers ans += (Math.Pow(i / m, n) - Math.Pow((i - 1) / m, n)) * i; return ans; } // Driver code public static void Main() { double m = 6, n = 3; Console.WriteLine(expect(m, n)); } } // This code is contributed // by Akanksha Rai |
PHP
<?php // PHP program for above implementation // Function find the maximum expectation function expect( $m , $n ) { $ans = 0.0; for ( $i = $m ; $i ; $i --) // formula to find the maximum number // and sum of maximum numbers $ans += (pow( $i / $m , $n ) - pow(( $i - 1) / $m , $n )) * $i ; return $ans ; } // Driver code $m = 6; $n = 3; echo expect( $m , $n ); // This code is contributed by ChitraNayal ?> |
Javascript
<script> // Javascript program for above implementation // Function find the maximum expectation function expect(m,n) { let ans = 0.0, i; for (i = m; i > 0; i--) // formula to find the maximum number // and sum of maximum numbers ans += (Math.pow(i / m, n) - Math.pow((i - 1) / m, n)) * i; return ans; } // Driver code let m = 6, n = 3; document.write(expect(m, n).toFixed(5)) // This code is contributed by avanitrachhadiya2155 </script> |
4.95833
Time Complexity: O(m * log n), where m and n are given inputs.
Auxiliary Space: O(1), as constant space is used.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!