Given an n-ary tree of n vertices and n-1 edges. The tree is given in the form of adjacency list. Find number of subtrees of even size in given tree.
Examples:
Input : 1 / \ 2 3 / \ \ 4 5 6 / \ 7 8 Output : 2 Subtree rooted at 1 and 3 are of even size. Input : 1 / \ 2 3 / | \ \ 4 5 6 7 / | \ 8 9 10 Output : 3 Subtree rooted at 1, 3 and 5 are of even size.
A simple solution is to perform dfs starting from every node and find size of subtree rooted at that node. If size is even increment count. Time complexity of above solution is O(n2).
A better solution is to perform single dfs on given tree. The idea is to first find recursively size of subtree of all children nodes, then find size of subtree rooted at current node by taking sum of size of children node subtrees and increment count if size is even.
Below is the implementation of above approach:
C++
// C++ program to find number of subtrees of even size. #include <bits/stdc++.h> using namespace std; // DFS function to traverse the tree and find // number of even size subtree. int dfs(vector< int > adj[], int n, int v, int & ans) { // Size of subtree is minimum possible 1 for // leaf node. int size = 1; // Find size of subtree rooted at children nodes // and add the size to current subtree size. for ( auto ele : adj[v]) { size += dfs(adj, n, ele, ans); } // If size is even then increment count. if (size % 2 == 0) ans++; return size; } // Driver code int main() { int n; n = 10; vector< int > adj[n + 1]; /* 1 / \ 2 3 / \ \ 4 5 6 / \ 7 8 */ adj[1].push_back(2); adj[1].push_back(3); adj[2].push_back(4); adj[2].push_back(5); adj[3].push_back(6); adj[5].push_back(7); adj[5].push_back(8); /* 1 / \ 2 3 / | \ \ 4 5 6 7 / | \ 8 9 10 */ /*adj[1].push_back(2); adj[1].push_back(3); adj[2].push_back(4); adj[2].push_back(5); adj[2].push_back(6); adj[3].push_back(7); adj[5].push_back(8); adj[5].push_back(9); adj[5].push_back(10); */ int ans = 0; dfs(adj, n, 1, ans); cout << ans; return 0; } |
Java
// Java program to find number of // subtrees of even size. import java.io.*; import java.util.*; class GFG { public static int ans = 0 ; // DFS function to traverse the tree and // find number of even size subtree. static int dfs(ArrayList<ArrayList<Integer>> adj, int n, int v) { // Size of subtree is minimum possible 1 // for leaf node. int size = 1 ; // Find size of subtree rooted at children // nodes and add the size to current // subtree size. for ( int ele:adj.get(v)) { size += dfs(adj, n, ele); } // If size is even then increment count. if (size % 2 == 0 ) { ans++; } return size; } // Driver code public static void main (String[] args) { int n; n = 10 ; ArrayList<ArrayList<Integer>> adj = new ArrayList<ArrayList<Integer> >(); for ( int i = 0 ; i < n + 1 ; i++) { adj.add( new ArrayList<Integer>()); } /* 1 / \ 2 3 / \ \ 4 5 6 / \ 7 8 */ adj.get( 1 ).add( 2 ); adj.get( 1 ).add( 3 ); adj.get( 2 ).add( 4 ); adj.get( 2 ).add( 5 ); adj.get( 3 ).add( 6 ); adj.get( 5 ).add( 7 ); adj.get( 5 ).add( 8 ); /* 1 / \ 2 3 / | \ \ 4 5 6 7 / | \ 8 9 10 */ /*adj[1].Add(2); adj[1].Add(3); adj[2].Add(4); adj[2].Add(5); adj[2].Add(6); adj[3].Add(7); adj[5].Add(8); adj[5].Add(9); adj[5].Add(10); */ dfs(adj, n, 1 ); System.out.println(ans); } } // This code is contributed by avanitrachhadiya2155 |
Python3
# Python3 program to find number # of subtrees of even size ans = 0 # DFS function to traverse the tree # and find number of even size subtree def dfs(adj, n, v): global ans # Size of subtree is minimum possible # 1 for leaf node. size = 1 # Find size of subtree rooted at # children nodes and add the size # to current subtree size. for ele in adj[v]: size + = dfs(adj, n, ele) # If size is even then increment count. if (size % 2 = = 0 ): ans + = 1 return size # Driver code if __name__ = = '__main__' : n = 10 adj = [[] for i in range (n + 1 )] # 1 # / \ # 2 3 # / \ \ # 4 5 6 # / \ # 7 8 adj[ 1 ].append( 2 ) adj[ 1 ].append( 3 ) adj[ 2 ].append( 4 ) adj[ 2 ].append( 5 ) adj[ 3 ].append( 6 ) adj[ 5 ].append( 7 ) adj[ 5 ].append( 8 ) # 1 # / \ # 2 3 # / | \ \ # 4 5 6 7 # / | \ # 8 9 10 # # adj[1].append(2) # adj[1].append(3) # adj[2].append(4) # adj[2].append(5) # adj[2].append(6) # adj[3].append(7) # adj[5].append(8) # adj[5].append(9) # adj[5].append(10) # # ans = 0 dfs(adj, n, 1 ) print (ans) # This code is contributed by mohit kumar 29 |
C#
// C# program to find number of // subtrees of even size. using System; using System.Collections; class GFG{ // DFS function to traverse the tree and // find number of even size subtree. static int dfs(ArrayList []adj, int n, int v, ref int ans) { // Size of subtree is minimum possible 1 // for leaf node. int size = 1; // Find size of subtree rooted at children // nodes and add the size to current // subtree size. foreach ( int ele in adj[v]) { size += dfs(adj, n, ele, ref ans); } // If size is even then increment count. if (size % 2 == 0) ans++; return size; } // Driver code public static void Main( string []args) { int n; n = 10; ArrayList []adj = new ArrayList[n + 1]; for ( int i = 0; i < n + 1; i++) { adj[i] = new ArrayList(); } /* 1 / \ 2 3 / \ \ 4 5 6 / \ 7 8 */ adj[1].Add(2); adj[1].Add(3); adj[2].Add(4); adj[2].Add(5); adj[3].Add(6); adj[5].Add(7); adj[5].Add(8); /* 1 / \ 2 3 / | \ \ 4 5 6 7 / | \ 8 9 10 */ /*adj[1].Add(2); adj[1].Add(3); adj[2].Add(4); adj[2].Add(5); adj[2].Add(6); adj[3].Add(7); adj[5].Add(8); adj[5].Add(9); adj[5].Add(10); */ int ans = 0; dfs(adj, n, 1, ref ans); Console.Write(ans); } } // This code is contributed by rutvik_56 |
Javascript
<script> // Javascript program to find number of subtrees of even size. var ans = 0; // DFS function to traverse the tree and find // number of even size subtree. function dfs(adj, n, v) { // Size of subtree is minimum possible 1 for // leaf node. var size = 1; // Find size of subtree rooted at children nodes // and add the size to current subtree size. for ( var i =0; i< adj[v].length; i++) { size += dfs(adj, n, adj[v][i]); } // If size is even then increment count. if (size % 2 == 0) ans++; return size; } // Driver code var n; n = 10; var adj = Array.from(Array(n+1), () => new Array(0)) /* 1 / \ 2 3 / \ \ 4 5 6 / \ 7 8 */ adj[1].push(2); adj[1].push(3); adj[2].push(4); adj[2].push(5); adj[3].push(6); adj[5].push(7); adj[5].push(8); /* 1 / \ 2 3 / | \ \ 4 5 6 7 / | \ 8 9 10 */ /*adj[1].push(2); adj[1].push(3); adj[2].push(4); adj[2].push(5); adj[2].push(6); adj[3].push(7); adj[5].push(8); adj[5].push(9); adj[5].push(10); */ dfs(adj, n, 1); document.write( ans); // This code is contributed by noob2000. </script> |
Output:
2
Time Complexity: O(n)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!