Monday, January 13, 2025
Google search engine
HomeData Modelling & AISum of quotients of division of N by powers of K not...

Sum of quotients of division of N by powers of K not exceeding N

Given two positive integers N and K, the task is to find the sum of the quotients of the division of N by powers of K which are less than or equal to N.

Examples:

Input: N = 10, K = 2
Output: 18
Explanation:
Dividing 10 by 1 (= 20). Quotient = 10. Therefore, sum = 10. 
Dividing 10 by 2 (= 21). Quotient = 5. Therefore, sum = 15. 
Divide 10 by 4 (= 22). Quotient = 2. Therefore, sum = 17. 
Divide 10 by 8 (= 23). Quotient = 1. Therefore, sum = 18. 

Input: N = 5, K=2
Output: 8
Explanation:
Dividing 5 by 1 (= 20). Quotient = 5. Therefore, sum = 5. 
Divide 5 by 2 (= 21). Quotient = 2. Therefore, sum = 7. 
Divide 5 by 4 (= 22). Quotient = 1. Therefore, sum = 8. 

Approach: The idea is to iterate a loop while the current power of K is less than or equal to N and keep adding the quotient to the sum in each iteration.
Follow the steps below to solve the problem:

  • Initialize a variable, say sum, to store the required sum.
  • Initialize a variable, say i = 1 (= K0) to store the powers of K.
  • Iterate until the value of i ? N, and perform the following operations:
    • Store the quotient obtained on dividing N by i in a variable, say X.
    • Add the value of X to ans and multiply i by K to obtain the next power of K.
  • Print the value of the sum as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate sum of
// quotients obtained by dividing
// N by powers of K <= N
int findSum(int N, int K)
{
    // Store the required sum
    int ans = 0;
    int i = 1;
 
    // Iterate until i exceeds N
    while (i <= N) {
 
        // Update sum
        ans += N / i;
 
        // Multiply i by K to
        // obtain next power of K
        i = i * K;
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    // Given N and K
    int N = 10, K = 2;
    findSum(N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
  // Function to calculate sum of
  // quotients obtained by dividing
  // N by powers of K <= N
  static void findSum(int N, int K)
  {
 
    // Store the required sum
    int ans = 0;
    int i = 1;
 
    // Iterate until i exceeds N
    while (i <= N)
    {
 
      // Update sum
      ans += N / i;
 
      // Multiply i by K to
      // obtain next power of K
      i = i * K;
    }
 
    // Print the result
    System.out.println(ans);
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    // Given N and K
    int N = 10, K = 2;
    findSum(N, K);
  }
}
 
// This code is contributed by shubhamsingh10


Python3




# Python3 program for the above approach
 
# Function to calculate sum of
# quotients obtained by dividing
# N by powers of K <= N
def findSum(N, K):
   
    # Store the required sum
    ans = 0
    i = 1
 
    # Iterate until i exceeds N
    while (i <= N):
 
        # Update sum
        ans += N // i
 
        # Multiply i by K to
        # obtain next power of K
        i = i * K
 
    # Print the result
    print (ans)
 
# Driver Code
if __name__ == '__main__':
   
    # Given N and K
    N, K = 10, 2
    findSum(N, K)
 
    # This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to calculate sum of
// quotients obtained by dividing
// N by powers of K <= N
static void findSum(int N, int K)
{
 
    // Store the required sum
    int ans = 0;
    int i = 1;
     
    // Iterate until i exceeds N
    while (i <= N)
    {
         
        // Update sum
        ans += N / i;
         
        // Multiply i by K to
        // obtain next power of K
        i = i * K;
    }
     
    // Print the result
    Console.Write(ans);
}
 
// Driver code
static void Main()
{
     
    // Given N and K
    int N = 10, K = 2;
     
    findSum(N, K);
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
 
// javascript program for the above approach
 
// Function to calculate sum of
// quotients obtained by dividing
// N by powers of K <= N
function findSum(N, K)
{
    // Store the required sum
    var ans = 0;
    var i = 1;
 
    // Iterate until i exceeds N
    while (i <= N) {
 
        // Update sum
        ans += Math.floor(N / i);
 
        // Multiply i by K to
        // obtain next power of K
        i = i * K;
    }
 
    // Print the result
    document.write(ans);
}
 
// Driver Code
 
    // Given N and K
    var N = 10, K = 2;
    findSum(N, K);
     
</script>


Output: 

18

 

Time Complexity: O(logK(N))
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments