Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum Cost Path to visit all nodes situated at the Circumference of...

Minimum Cost Path to visit all nodes situated at the Circumference of Circular Road

Given circumference of the circle and an array pos[] which marks the distance of N points on circle relative to a fixed point in the clockwise direction. We have to find a minimum distance through which we can visit all points. We can start with any point.
Examples:
 

Input: circumference = 20, pos = [3, 6, 9] 
Output: min path cost =6 
Explanation: 
If we start from 3, we go to 6 and then we go to 9. Therefore, total path cost is 3 units for first movement and 3 units for second movement which sums up to 6.
Input:circumference=20 pos = [3, 6, 19] 
Output: min path cost = 7 
Explanation : 
If we start from 19 and we go to 3 it will cost 4 units because we go from 19 -> 20 -> 1 -> 2 -> 3 which gives 4 units, and then 3 to 6 which gives 3 units. In total minimum cost will be 4 + 3 = 7. 
 

 

Approach : 
To solve the problem mentioned above we have to follow the steps given below: 
 

  • Sort the array which marks the distance of N points on circle.
  • Make the array size twice by adding N element with value arr[i + n] = circumference + arr[i].
  • Find the minimum value (arr[i + (n-1)] – arr[i]) for all valid iterations of value i.

Below is the implementation of the above approach: 
 

C++




// C++ implementation to find the
// Minimum Cost Path to visit all nodes
// situated at the Circumference of
// Circular Road
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum cost
int minCost(int arr[], int n, int circumference)
{
    // Sort the given array
    sort(arr, arr + n);
 
    // Initialise a new array of double size
    int arr2[2 * n];
 
    // Fill the array elements
    for (int i = 0; i < n; i++) {
        arr2[i] = arr[i];
        arr2[i + n] = arr[i] + circumference;
    }
 
    // Find the minimum path cost
    int res = INT_MAX;
 
    for (int i = 0; i < n; i++)
        res = min(res, arr2[i + (n - 1)] - arr2[i]);
 
    // Return the final result
    return res;
}
 
// Driver code
int main()
{
    int arr[] = { 19, 3, 6 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    int circumference = 20;
 
    cout << minCost(arr, n, circumference);
 
    return 0;
}


Java




// Java implementation to find the
// Minimum Cost Path to visit all nodes
// situated at the Circumference of
// Circular Road
import java.util.*;
import java. util. Arrays;
 
class GFG {
 
// Function to find the minimum cost
static int minCost(int arr[], int n,
                   int circumference)
{
    // Sort the given array
    Arrays.sort(arr);
 
    // Initialise a new array of double size
    int[] arr2 = new int[2 * n];
 
    // Fill the array elements
    for(int i = 0; i < n; i++)
    {
       arr2[i] = arr[i];
       arr2[i + n] = arr[i] + circumference;
    }
 
    // Find the minimum path cost
    int res = Integer.MAX_VALUE;
 
    for(int i = 0; i < n; i++)
       res = Math.min(res,
                      arr2[i + (n - 1)] -
                      arr2[i]);
 
    // Return the final result
    return res;
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 19, 3, 6 };
    int n = arr.length;
    int circumference = 20;
 
    System.out.println(minCost(arr, n,
                               circumference));
}
 
}
 
// This code is contributed by ANKITKUMAR34


Python3




# Python3 implementation to find the
# minimum cost path to visit all nodes
# situated at the circumference of
# circular Road
 
# Function to find the minimum cost
def minCost(arr, n, circumference):
 
    # Sort the given array
    arr.sort()
 
    #Initialise a new array of double size
    arr2 = [0] * (2 * n)
 
    # Fill the array elements
    for i in range(n):
        arr2[i] = arr[i]
        arr2[i + n] = arr[i] + circumference
 
    # Find the minimum path cost
    res = 9999999999999999999;
 
    for i in range(n):
        res = min(res,
                  arr2[i + (n - 1)] -
                  arr2[i]);
 
    # Return the final result
    return res;
 
# Driver code
arr = [ 19, 3, 6 ];
n = len(arr)
circumference = 20;
 
print(minCost(arr, n, circumference))
 
# This code is contributed by ANKITKUMAR34


C#




// C# implementation to find the
// Minimum Cost Path to visit all nodes
// situated at the Circumference of
// Circular Road
using System;
 
class GFG{
 
// Function to find the minimum cost
static int minCost(int []arr, int n,
                   int circumference)
{
    // Sort the given array
    Array.Sort(arr);
 
    // Initialise a new array of double size
    int[] arr2 = new int[2 * n];
 
    // Fill the array elements
    for(int i = 0; i < n; i++)
    {
       arr2[i] = arr[i];
       arr2[i + n] = arr[i] + circumference;
    }
 
    // Find the minimum path cost
    int res = int.MaxValue;
 
    for(int i = 0; i < n; i++)
       res = Math.Min(res, arr2[i + (n - 1)] -
                           arr2[i]);
 
    // Return the readonly result
    return res;
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 19, 3, 6 };
    int n = arr.Length;
    int circumference = 20;
 
    Console.WriteLine(minCost(arr, n, circumference));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript implementation to find the
// Minimum Cost Path to visit all nodes
// situated at the Circumference of
// Circular Road
 
// Function to find the minimum cost
function minCost(arr, n,circumference)
{
    // Sort the given array
    arr.sort((a,b)=>a-b)
 
    // Initialise a new array of double size
    var arr2 = Array(2* n).fill(0);
 
    // Fill the array elements
    for (var i = 0; i < n; i++) {
        arr2[i] = arr[i];
        arr2[i + n] = arr[i] + circumference;
    }
 
    // Find the minimum path cost
    var res = 1000000000;
 
    for (var i = 0; i < n; i++)
        res = Math.min(res, arr2[i + (n - 1)] - arr2[i]);
 
    // Return the final result
    return res;
}
 
// Driver code
var arr = [19, 3, 6 ];
var n = arr.length;
var circumference = 20;
document.write( minCost(arr, n, circumference));
 
</script>


Output: 

7

 

Time Complexity: O(n * log n)

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments