Monday, November 25, 2024
Google search engine
HomeData Modelling & AIPrint all Prime Levels of a Binary Tree

Print all Prime Levels of a Binary Tree

Given a Binary Tree, the task is to print all prime levels of this tree. 

Any level of a Binary tree is said to be a prime level, if all nodes of this level are prime.

Examples: 

Input: 
                 1
                /  \ 
              15    13 
             /     /   \ 
            11    7     29 
                   \    / 
                   2   3  
Output: 11 7 29
         2 3
Explanation: 
Third and Fourth levels are prime levels.

Input:
                  7
                /  \ 
              23     41 
             /  \      \
            31   16     3 
           / \     \    / 
          2   5    17  11    
                   /
                  23 
Output: 7
         23 41
         2 5 17 11
         23
Explanation: 
First, Second, Fourth and 
Fifth levels are prime levels.

Approach: In order to check if a level is Prime level or not, 

Below is the implementation of the above approach: 

C++




// C++ program for printing a prime
// levels of binary Tree
 
#include <bits/stdc++.h>
using namespace std;
 
// A Tree node
struct Node {
    int key;
    struct Node *left, *right;
};
 
// Utility function to create a new node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
    temp->left = temp->right = NULL;
    return (temp);
}
 
// Function to check whether node
// Value is prime or not
bool isPrime(int n)
{
    if (n == 1)
        return false;
 
    // Iterate from 2 to sqrt(n)
    for (int i = 2; i * i <= n; i++) {
 
        // If it has a factor
        if (n % i == 0) {
            return false;
        }
    }
 
    return true;
}
 
// Function to print a Prime level
void printLevel(struct Node* queue[],
                int index, int size)
{
    for (int i = index; i < size; i++) {
        cout << queue[i]->key << " ";
    }
 
    cout << endl;
}
 
// Function to check whether given level is
// prime level or not
bool isLevelPrime(struct Node* queue[],
                  int index, int size)
{
    for (int i = index; i < size; i++) {
        // Check value of node is
        // pPrime or not
        if (!isPrime(queue[index++]->key)) {
            return false;
        }
    }
 
    // Return true if for loop
    // iIterate completely
    return true;
}
 
// Utility function to get Prime
// Level of a given Binary tree
void findPrimeLevels(struct Node* node,
                     struct Node* queue[],
                     int index, int size)
{
    // Print root node value, if Prime
    if (isPrime(queue[index]->key)) {
        cout << queue[index]->key << endl;
    }
 
    // Run while loop
    while (index < size) {
        int curr_size = size;
 
        // Run inner while loop
        while (index < curr_size) {
            struct Node* temp = queue[index];
 
            // Push left child in a queue
            if (temp->left != NULL)
                queue[size++] = temp->left;
 
            // Push right child in a queue
            if (temp->right != NULL)
                queue[size++] = temp->right;
 
            // Increment index
            index++;
        }
 
        // If condition to check, level is
        // prime or not
        if (isLevelPrime(
                queue, index, size - 1)) {
 
            // Function call to print
            // prime level
            printLevel(queue, index, size);
        }
    }
}
 
// Function to find total no of nodes
// In a given binary tree
int findSize(struct Node* node)
{
    // Base condition
    if (node == NULL)
        return 0;
 
    return 1
           + findSize(node->left)
           + findSize(node->right);
}
 
// Function to find Prime levels
// In a given binary tree
void printPrimeLevels(struct Node* node)
{
    int t_size = findSize(node);
 
    // Create queue
    struct Node* queue[t_size];
 
    // Push root node in a queue
    queue[0] = node;
 
    // Function call
    findPrimeLevels(node, queue, 0, 1);
}
 
// Driver Code
int main()
{
    /*      10
         /    \
        13     11
            /  \
           19    23
          / \    / \
         21 29 43 15
                  /
                 7 */
 
    // Create Binary Tree as shown
 
    Node* root = newNode(10);
    root->left = newNode(13);
    root->right = newNode(11);
 
    root->right->left = newNode(19);
    root->right->right = newNode(23);
 
    root->right->left->left = newNode(21);
    root->right->left->right = newNode(29);
    root->right->right->left = newNode(43);
    root->right->right->right = newNode(15);
    root->right->right->right->left = newNode(7);
 
    // Print Prime Levels
    printPrimeLevels(root);
 
    return 0;
}


Java




// Java program for the above approach
public class Main
{
    // A Tree node
    static class Node {
         
        public int key;
        public Node left, right;
         
        public Node(int key)
        {
            this.key = key;
            left = right = null;
        }
    }
     
    // Utility function to create a new node
    static Node newNode(int key)
    {
        Node temp = new Node(key);
        return temp;
    }
       
    // Function to check whether node
    // Value is prime or not
    static boolean isPrime(int n)
    {
        if (n == 1)
            return false;
       
        // Iterate from 2 to sqrt(n)
        for(int i = 2; i * i <= n; i++)
        {
               
            // If it has a factor
            if (n % i == 0)
            {
                return false;
            }
        }
        return true;
    }
       
    // Function to print a Prime level
    static void printLevel(Node[] queue, int index, int size)
    {
        for(int i = index; i < size; i++)
        {
            System.out.print(queue[i].key + " ");
        }
        System.out.println();
    }
       
    // Function to check whether given level is
    // prime level or not
    static boolean isLevelPrime(Node[] queue, int index, int size)
    {
        for(int i = index; i < size; i++)
        {
               
            // Check value of node is
            // pPrime or not
            if (!isPrime(queue[index++].key))
            {
                return false;
            }
        }
           
        // Return true if for loop
        // iIterate completely
        return true;
    }
       
    // Utility function to get Prime
    // Level of a given Binary tree
    static void findPrimeLevels(Node node, Node[] queue, int index, int size)
    {
           
        // Print root node value, if Prime
        if (isPrime(queue[index].key))
        {
            System.out.println(queue[index].key);
        }
       
        // Run while loop
        while (index < size)
        {
            int curr_size = size;
       
            // Run inner while loop
            while (index < curr_size)
            {
                Node temp = queue[index];
       
                // Push left child in a queue
                if (temp.left != null)
                    queue[size++] = temp.left;
       
                // Push right child in a queue
                if (temp.right != null)
                    queue[size++] = temp.right;
       
                // Increment index
                index++;
            }
       
            // If condition to check, level is
            // prime or not
            if (isLevelPrime(queue, index, size - 1))
            {
                   
                // Function call to print
                // prime level
                printLevel(queue, index, size);
            }
        }
    }
       
    // Function to find total no of nodes
    // In a given binary tree
    static int findSize(Node node)
    {
           
        // Base condition
        if (node == null)
            return 0;
       
        return 1 + findSize(node.left) +
                   findSize(node.right);
    }
       
    // Function to find Prime levels
    // In a given binary tree
    static void printPrimeLevels(Node node)
    {
        int t_size = findSize(node);
       
        // Create queue
        Node[] queue = new Node[t_size];
        for(int i = 0; i < t_size; i++)
        {
            queue[i] = new Node(0);
        }
       
        // Push root node in a queue
        queue[0] = node;
       
        // Function call
        findPrimeLevels(node, queue, 0, 1);
    }
     
    public static void main(String[] args) {
        /*     10
             /    \
            13     11
                  /  \
                19    23
               / \    / \
              21 29 43 15
                      /
                     7 */
           
        // Create Binary Tree as shown
        Node root = newNode(10);
        root.left = newNode(13);
        root.right = newNode(11);
           
        root.right.left = newNode(19);
        root.right.right = newNode(23);
           
        root.right.left.left = newNode(21);
        root.right.left.right = newNode(29);
        root.right.right.left = newNode(43);
        root.right.right.right = newNode(15);
        root.right.right.right.left = newNode(7);
           
        // Print Prime Levels
        printPrimeLevels(root);
    }
}
 
// This code is contributed by suresh07.


Python3




# Python3 program for printing a prime
# levels of binary Tree
  
# A Tree node
class Node:
     
    def __init__(self, key):
       
        self.key = key
        self.left = None
        self.right = None
                 
# function to create a
# new node
def newNode(key):
 
    temp = Node(key);   
    return temp;
  
# Function to check whether
# node Value is prime or not
def isPrime(n):
 
    if (n == 1):
        return False;   
    i = 2
     
    # Iterate from 2
    # to sqrt(n)
    while(i * i <= n):
  
        # If it has a factor
        if (n % i == 0):
            return False;
        i += 1
  
    return True;
 
# Function to print a
# Prime level
def printLevel(queue,
               index, size):
     
    for i in range(index, size):
        print(queue[i].key, end = ' ')
    print()
  
  
# Function to check whether
# given level is prime level
# or not
def isLevelPrime(queue,
                 index, size):
     
    for i in range(index, size):
     
        # Check value of node is
        # pPrime or not
        if (not isPrime(queue[index].key)):
            index += 1
            return False;       
  
    # Return true if for loop
    # iIterate completely
    return True;
  
# Utility function to get Prime
# Level of a given Binary tree
def findPrimeLevels(node, queue,
                    index, size):
 
    # Print root node value, if Prime
    if (isPrime(queue[index].key)):
        print(queue[index].key)
  
    # Run while loop
    while (index < size):
        curr_size = size;
  
        # Run inner while loop
        while (index < curr_size):
            temp = queue[index];
  
            # Push left child in a queue
            if (temp.left != None):
                queue[size] = temp.left;
                size+=1
  
            # Push right child in a queue
            if (temp.right != None):
                queue[size] = temp.right;
                size+=1
  
            # Increment index
            index+=1;
         
  
        # If condition to check, level
        # is prime or not
        if (isLevelPrime(queue, index,
                         size - 1)):
  
            # Function call to print
            # prime level
            printLevel(queue,
                       index, size);       
  
# Function to find total no
# of nodes In a given binary
# tree
def findSize(node):
 
    # Base condition
    if (node == None):
        return 0;
  
    return (1 + findSize(node.left) +
                findSize(node.right));
  
# Function to find Prime levels
# In a given binary tree
def printPrimeLevels(node):
 
    t_size = findSize(node);
  
    # Create queue
    queue=[0 for i in range(t_size)]
  
    # Push root node in a queue
    queue[0] = node;
  
    # Function call
    findPrimeLevels(node, queue,
                    0, 1);
     
# Driver code    
if __name__ == "__main__":
     
    '''      10
         /    \
        13     11
            /  \
           19    23
          / \    / \
         21 29 43 15
                  /
                 7 '''
  
    # Create Binary Tree as shown
    root = newNode(10);
    root.left = newNode(13);
    root.right = newNode(11);
  
    root.right.left = newNode(19);
    root.right.right = newNode(23);
  
    root.right.left.left = newNode(21);
    root.right.left.right = newNode(29);
    root.right.right.left = newNode(43);
    root.right.right.right = newNode(15);
    root.right.right.right.left = newNode(7);
  
    # Print Prime Levels
    printPrimeLevels(root);
 
# This code is contributed by Rutvik_56


C#




// C# program for printing a prime
// levels of binary Tree
using System;
using System.Collections.Generic;
class GFG {
     
    // A Tree node
    class Node {
        
        public int key;
        public Node left, right;
        
        public Node(int key)
        {
            this.key = key;
            left = right = null;
        }
    }
     
    // Utility function to create a new node
    static Node newNode(int key)
    {
        Node temp = new Node(key);
        return temp;
    }
      
    // Function to check whether node
    // Value is prime or not
    static bool isPrime(int n)
    {
        if (n == 1)
            return false;
      
        // Iterate from 2 to sqrt(n)
        for(int i = 2; i * i <= n; i++)
        {
              
            // If it has a factor
            if (n % i == 0)
            {
                return false;
            }
        }
        return true;
    }
      
    // Function to print a Prime level
    static void printLevel(Node[] queue, int index, int size)
    {
        for(int i = index; i < size; i++)
        {
            Console.Write(queue[i].key + " ");
        }
        Console.WriteLine();
    }
      
    // Function to check whether given level is
    // prime level or not
    static bool isLevelPrime(Node[] queue, int index, int size)
    {
        for(int i = index; i < size; i++)
        {
              
            // Check value of node is
            // pPrime or not
            if (!isPrime(queue[index++].key))
            {
                return false;
            }
        }
          
        // Return true if for loop
        // iIterate completely
        return true;
    }
      
    // Utility function to get Prime
    // Level of a given Binary tree
    static void findPrimeLevels(Node node, Node[] queue, int index, int size)
    {
          
        // Print root node value, if Prime
        if (isPrime(queue[index].key))
        {
            Console.WriteLine(queue[index].key);
        }
      
        // Run while loop
        while (index < size)
        {
            int curr_size = size;
      
            // Run inner while loop
            while (index < curr_size)
            {
                Node temp = queue[index];
      
                // Push left child in a queue
                if (temp.left != null)
                    queue[size++] = temp.left;
      
                // Push right child in a queue
                if (temp.right != null)
                    queue[size++] = temp.right;
      
                // Increment index
                index++;
            }
      
            // If condition to check, level is
            // prime or not
            if (isLevelPrime(queue, index, size - 1))
            {
                  
                // Function call to print
                // prime level
                printLevel(queue, index, size);
            }
        }
    }
      
    // Function to find total no of nodes
    // In a given binary tree
    static int findSize(Node node)
    {
          
        // Base condition
        if (node == null)
            return 0;
      
        return 1 + findSize(node.left) +
                   findSize(node.right);
    }
      
    // Function to find Prime levels
    // In a given binary tree
    static void printPrimeLevels(Node node)
    {
        int t_size = findSize(node);
      
        // Create queue
        Node[] queue = new Node[t_size];
        for(int i = 0; i < t_size; i++)
        {
            queue[i] = new Node(0);
        }
      
        // Push root node in a queue
        queue[0] = node;
      
        // Function call
        findPrimeLevels(node, queue, 0, 1);
    }
     
  static void Main() {
    /*     10
         /    \
        13     11
              /  \
            19    23
           / \    / \
          21 29 43 15
                  /
                 7 */
      
    // Create Binary Tree as shown
    Node root = newNode(10);
    root.left = newNode(13);
    root.right = newNode(11);
      
    root.right.left = newNode(19);
    root.right.right = newNode(23);
      
    root.right.left.left = newNode(21);
    root.right.left.right = newNode(29);
    root.right.right.left = newNode(43);
    root.right.right.right = newNode(15);
    root.right.right.right.left = newNode(7);
      
    // Print Prime Levels
    printPrimeLevels(root);
  }
}
 
// This code is contributed by mukesh07.


Javascript




<script>
 
// Javascript program for printing a
// prime levels of binary Tree
 
// A Tree node
class Node
{
    constructor(key)
    {
        this.left = null;
        this.right = null;
        this.key = key;
    }
}
 
// Utility function to create a new node
function newNode(key)
{
    let temp = new Node(key);
    return (temp);
}
 
// Function to check whether node
// Value is prime or not
function isPrime(n)
{
    if (n == 1)
        return false;
 
    // Iterate from 2 to sqrt(n)
    for(let i = 2; i * i <= n; i++)
    {
         
        // If it has a factor
        if (n % i == 0)
        {
            return false;
        }
    }
    return true;
}
 
// Function to print a Prime level
function printLevel(queue, index, size)
{
    for(let i = index; i < size; i++)
    {
         
        document.write(queue[i].key + " ");
    }
    document.write("</br>");
}
 
// Function to check whether given level is
// prime level or not
function isLevelPrime(queue, index, size)
{
    for(let i = index; i < size; i++)
    {
         
        // Check value of node is
        // pPrime or not
        if (!isPrime(queue[index++].key))
        {
            return false;
        }
    }
     
    // Return true if for loop
    // iIterate completely
    return true;
}
 
// Utility function to get Prime
// Level of a given Binary tree
function findPrimeLevels(node, queue, index, size)
{
     
    // Print root node value, if Prime
    if (isPrime(queue[index].key))
    {
        document.write(queue[index].key + "</br>");
    }
 
    // Run while loop
    while (index < size)
    {
        let curr_size = size;
 
        // Run inner while loop
        while (index < curr_size)
        {
            let temp = queue[index];
 
            // Push left child in a queue
            if (temp.left != null)
                queue[size++] = temp.left;
 
            // Push right child in a queue
            if (temp.right != null)
                queue[size++] = temp.right;
 
            // Increment index
            index++;
        }
 
        // If condition to check, level is
        // prime or not
        if (isLevelPrime(queue, index, size - 1))
        {
             
            // Function call to print
            // prime level
            printLevel(queue, index, size);
        }
    }
}
 
// Function to find total no of nodes
// In a given binary tree
function findSize(node)
{
     
    // Base condition
    if (node == null)
        return 0;
 
    return 1 + findSize(node.left) +
               findSize(node.right);
}
 
// Function to find Prime levels
// In a given binary tree
function printPrimeLevels(node)
{
    let t_size = findSize(node);
 
    // Create queue
    let queue = new Array(t_size);
    for(let i = 0; i < t_size; i++)
    {
        queue[i] = new Node();
    }
 
    // Push root node in a queue
    queue[0] = node;
 
    // Function call
    findPrimeLevels(node, queue, 0, 1);
}
 
// Driver code
/*     10
     /    \
    13     11
          /  \
        19    23
       / \    / \
      21 29 43 15
              /
             7 */
 
// Create Binary Tree as shown
let root = newNode(10);
root.left = newNode(13);
root.right = newNode(11);
 
root.right.left = newNode(19);
root.right.right = newNode(23);
 
root.right.left.left = newNode(21);
root.right.left.right = newNode(29);
root.right.right.left = newNode(43);
root.right.right.right = newNode(15);
root.right.right.right.left = newNode(7);
 
// Print Prime Levels
printPrimeLevels(root);
 
// This code is contributed by mukesh07
 
</script>


Output: 

13 11 
19 23 
7

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments