Given an array arr[] of size N, the task is to split the array into a minimum number of subset such that each pair of elements in each subset have the difference strictly greater than 1.
Note: All elements in the array are distinct.
Examples:
Input: arr = {5, 10, 6, 50}
Output: 2
Explanation:
Possible partitions are: {5, 10, 50}, {6}Input: arr = {2, 4, 6}
Output: 1
Explanation:
Possible partitions are: {2, 4, 6}
Approach: The idea is to observe that if there is no such pair i, j such that |arr[i] – arr[j]| = 1, then it is possible to put all the elements in the same partition, otherwise divide them into two partitions. So the required minimum number of partitions is always 1 or 2.
- Sort the given array.
- Compare the adjacent elements. If at any point their difference to be equal to 1, then print “2” as the required number of subset partition will always be 2 as we can put one of the elements from the above pair into another subset.
- If we traversed all the array didn’t found any adjacent pair with a difference less than 2 then print “1” without splitting the array into subsets we can have all possible pairs difference at least 2.
Below is the implementation for the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to Split the array into // minimum number of subsets with // difference strictly > 1 void split( int arr[], int n) { // Sort the array sort(arr, arr + n); int count = 1; // Traverse through the sorted array for ( int i = 1; i < n; i++) { // Check the pairs of elements // with difference 1 if (arr[i] - arr[i - 1] == 1) { // If we find even a single // pair with difference equal // to 1, then 2 partitions // else only 1 partition count = 2; break ; } } // Print the count of partitions cout << count << endl; } // Driver Code int main() { // Given array int arr[] = { 2, 4, 6 }; // Size of the array int n = sizeof (arr) / sizeof ( int ); // Function Call split(arr, n); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to split the array into // minimum number of subsets with // difference strictly > 1 static void split( int arr[], int n) { // Sort the array Arrays.sort(arr); int count = 1 ; // Traverse through the sorted array for ( int i = 1 ; i < n; i++) { // Check the pairs of elements // with difference 1 if (arr[i] - arr[i - 1 ] == 1 ) { // If we find even a single // pair with difference equal // to 1, then 2 partitions // else only 1 partition count = 2 ; break ; } } // Print the count of partitions System.out.print(count); } // Driver Code public static void main(String[] args) { // Given array int arr[] = { 2 , 4 , 6 }; // Size of the array int n = arr.length; // Function call split(arr, n); } } // This code is contributed by jrishabh99 |
Python3
# Python3 implementation of # the above approach # Function to Split the array into # minimum number of subsets with # difference strictly > 1 def split(arr, n): # Sort the array arr.sort() count = 1 # Traverse through the sorted array for i in range ( 1 , n): # Check the pairs of elements # with difference 1 if (arr[i] - arr[i - 1 ] = = 1 ): # If we find even a single # pair with difference equal # to 1, then 2 partitions # else only 1 partition count = 2 break # Print the count of partitions print (count) # Driver Code if __name__ = = '__main__' : # Given array arr = [ 2 , 4 , 6 ] # Size of the array n = len (arr) # Function call split(arr, n) # This code is contributed by Shivam Singh |
C#
// C# program for the above approach using System; class GFG{ // Function to split the array into // minimum number of subsets with // difference strictly > 1 static void split( int []arr, int n) { // Sort the array Array.Sort(arr); int count = 1; // Traverse through the sorted array for ( int i = 1; i < n; i++) { // Check the pairs of elements // with difference 1 if (arr[i] - arr[i - 1] == 1) { // If we find even a single // pair with difference equal // to 1, then 2 partitions // else only 1 partition count = 2; break ; } } // Print the count of partitions Console.Write(count); } // Driver Code public static void Main( string [] args) { // Given array int [] arr = new int []{ 2, 4, 6 }; // Size of the array int n = arr.Length; // Function call split(arr, n); } } // This code is contributed by Ritik Bansal |
Javascript
<script> // Javascript program for // the above approach // Function to split the array into // minimum number of subsets with // difference strictly > 1 function split(arr, n) { // Sort the array arr.sort(); let count = 1; // Traverse through the sorted array for (let i = 1; i < n; i++) { // Check the pairs of elements // with difference 1 if (arr[i] - arr[i - 1] == 1) { // If we find even a single // pair with difference equal // to 1, then 2 partitions // else only 1 partition count = 2; break ; } } // Print the count of partitions document.write(count); } // Driver Code // Given array let arr = [ 2, 4, 6 ]; // Size of the array let n = arr.length; // Function call split(arr, n); </script> |
1
Time Complexity: O(N log N), where N is the length of the array.
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!