Given a large positive number as string, count all rotations of the given number which are divisible by 8.
Examples:
Input: 8 Output: 1 Input: 40 Output: 1 Rotation: 40 is divisible by 8 04 is not divisible by 8 Input : 13502 Output : 0 No rotation is divisible by 8 Input : 43262488612 Output : 4
Approach: For large numbers it is difficult to rotate and divide each number by 8. Therefore, ‘divisibility by 8’ property is used which says that a number is divisible by 8 if the last 3 digits of the number is divisible by 8. Here we do not actually rotate the number and check last 8 digits for divisibility, instead we count consecutive sequence of 3 digits (in circular way) which are divisible by 8.
Illustration:
Consider a number 928160 Its rotations are 928160, 092816, 609281, 160928, 816092, 281609. Now form consecutive sequence of 3-digits from the original number 928160 as mentioned in the approach. 3-digit: (9, 2, 8), (2, 8, 1), (8, 1, 6), (1, 6, 0),(6, 0, 9), (0, 9, 2) We can observe that the 3-digit number formed by the these sets, i.e., 928, 281, 816, 160, 609, 092, are present in the last 3 digits of some rotation. Thus, checking divisibility of these 3-digit numbers gives the required number of rotations.
C++
// C++ program to count all rotations divisible // by 8 #include <bits/stdc++.h> using namespace std; // function to count of all rotations divisible // by 8 int countRotationsDivBy8(string n) { int len = n.length(); int count = 0; // For single digit number if (len == 1) { int oneDigit = n[0] - '0' ; if (oneDigit % 8 == 0) return 1; return 0; } // For two-digit numbers (considering all // pairs) if (len == 2) { // first pair int first = (n[0] - '0' ) * 10 + (n[1] - '0' ); // second pair int second = (n[1] - '0' ) * 10 + (n[0] - '0' ); if (first % 8 == 0) count++; if (second % 8 == 0) count++; return count; } // considering all three-digit sequences int threeDigit; for ( int i = 0; i < (len - 2); i++) { threeDigit = (n[i] - '0' ) * 100 + (n[i + 1] - '0' ) * 10 + (n[i + 2] - '0' ); if (threeDigit % 8 == 0) count++; } // Considering the number formed by the // last digit and the first two digits threeDigit = (n[len - 1] - '0' ) * 100 + (n[0] - '0' ) * 10 + (n[1] - '0' ); if (threeDigit % 8 == 0) count++; // Considering the number formed by the last // two digits and the first digit threeDigit = (n[len - 2] - '0' ) * 100 + (n[len - 1] - '0' ) * 10 + (n[0] - '0' ); if (threeDigit % 8 == 0) count++; // required count of rotations return count; } // Driver program to test above int main() { string n = "43262488612" ; cout << "Rotations: " << countRotationsDivBy8(n); return 0; } |
Java
// Java program to count all // rotations divisible by 8 import java.io.*; class GFG { // function to count of all // rotations divisible by 8 static int countRotationsDivBy8(String n) { int len = n.length(); int count = 0 ; // For single digit number if (len == 1 ) { int oneDigit = n.charAt( 0 ) - '0' ; if (oneDigit % 8 == 0 ) return 1 ; return 0 ; } // For two-digit numbers // (considering all pairs) if (len == 2 ) { // first pair int first = (n.charAt( 0 ) - '0' ) * 10 + (n.charAt( 1 ) - '0' ); // second pair int second = (n.charAt( 1 ) - '0' ) * 10 + (n.charAt( 0 ) - '0' ); if (first % 8 == 0 ) count++; if (second % 8 == 0 ) count++; return count; } // considering all three-digit sequences int threeDigit; for ( int i = 0 ; i < (len - 2 ); i++) { threeDigit = (n.charAt(i) - '0' ) * 100 + (n.charAt(i + 1 ) - '0' ) * 10 + (n.charAt(i + 2 ) - '0' ); if (threeDigit % 8 == 0 ) count++; } // Considering the number formed by the // last digit and the first two digits threeDigit = (n.charAt(len - 1 ) - '0' ) * 100 + (n.charAt( 0 ) - '0' ) * 10 + (n.charAt( 1 ) - '0' ); if (threeDigit % 8 == 0 ) count++; // Considering the number formed by the last // two digits and the first digit threeDigit = (n.charAt(len - 2 ) - '0' ) * 100 + (n.charAt(len - 1 ) - '0' ) * 10 + (n.charAt( 0 ) - '0' ); if (threeDigit % 8 == 0 ) count++; // required count of rotations return count; } // Driver program public static void main (String[] args) { String n = "43262488612" ; System.out.println( "Rotations: " +countRotationsDivBy8(n)); } } // This code is contributed by vt_m. |
Python3
# Python3 program to count all # rotations divisible by 8 # function to count of all # rotations divisible by 8 def countRotationsDivBy8(n): l = len (n) count = 0 # For single digit number if (l = = 1 ): oneDigit = int (n[ 0 ]) if (oneDigit % 8 = = 0 ): return 1 return 0 # For two-digit numbers # (considering all pairs) if (l = = 2 ): # first pair first = int (n[ 0 ]) * 10 + int (n[ 1 ]) # second pair second = int (n[ 1 ]) * 10 + int (n[ 0 ]) if (first % 8 = = 0 ): count + = 1 if (second % 8 = = 0 ): count + = 1 return count # considering all # three-digit sequences threeDigit = 0 for i in range ( 0 ,(l - 2 )): threeDigit = ( int (n[i]) * 100 + int (n[i + 1 ]) * 10 + int (n[i + 2 ])) if (threeDigit % 8 = = 0 ): count + = 1 # Considering the number # formed by the last digit # and the first two digits threeDigit = ( int (n[l - 1 ]) * 100 + int (n[ 0 ]) * 10 + int (n[ 1 ])) if (threeDigit % 8 = = 0 ): count + = 1 # Considering the number # formed by the last two # digits and the first digit threeDigit = ( int (n[l - 2 ]) * 100 + int (n[l - 1 ]) * 10 + int (n[ 0 ])) if (threeDigit % 8 = = 0 ): count + = 1 # required count # of rotations return count # Driver Code if __name__ = = '__main__' : n = "43262488612" print ( "Rotations:" ,countRotationsDivBy8(n)) # This code is contributed by mits. |
C#
// C# program to count all // rotations divisible by 8 using System; class GFG { // function to count of all // rotations divisible by 8 static int countRotationsDivBy8(String n) { int len = n.Length; int count = 0; // For single digit number if (len == 1) { int oneDigit = n[0] - '0' ; if (oneDigit % 8 == 0) return 1; return 0; } // For two-digit numbers // (considering all pairs) if (len == 2) { // first pair int first = (n[0] - '0' ) * 10 + (n[1] - '0' ); // second pair int second = (n[1] - '0' ) * 10 + (n[0] - '0' ); if (first % 8 == 0) count++; if (second % 8 == 0) count++; return count; } // considering all three - // digit sequences int threeDigit; for ( int i = 0; i < (len - 2); i++) { threeDigit = (n[i] - '0' ) * 100 + (n[i + 1] - '0' ) * 10 + (n[i + 2] - '0' ); if (threeDigit % 8 == 0) count++; } // Considering the number formed by the // last digit and the first two digits threeDigit = (n[len - 1] - '0' ) * 100 + (n[0] - '0' ) * 10 + (n[1] - '0' ); if (threeDigit % 8 == 0) count++; // Considering the number formed // by the last two digits and // the first digit threeDigit = (n[len - 2] - '0' ) * 100 + (n[len - 1] - '0' ) * 10 + (n[0] - '0' ); if (threeDigit % 8 == 0) count++; // required count of rotations return count; } // Driver Code public static void Main () { String n = "43262488612" ; Console.Write( "Rotations: " +countRotationsDivBy8(n)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to count all // rotations divisible by 8 // function to count of all // rotations divisible by 8 function countRotationsDivBy8( $n ) { $len = strlen ( $n ); $count = 0; // For single digit number if ( $len == 1) { $oneDigit = $n [0] - '0' ; if ( $oneDigit % 8 == 0) return 1; return 0; } // For two-digit numbers // (considering all pairs) if ( $len == 2) { // first pair $first = ( $n [0] - '0' ) * 10 + ( $n [1] - '0' ); // second pair $second = ( $n [1] - '0' ) * 10 + ( $n [0] - '0' ); if ( $first % 8 == 0) $count ++; if ( $second % 8 == 0) $count ++; return $count ; } // considering all // three-digit sequences $threeDigit ; for ( $i = 0; $i < ( $len - 2); $i ++) { $threeDigit = ( $n [ $i ] - '0' ) * 100 + ( $n [ $i + 1] - '0' ) * 10 + ( $n [ $i + 2] - '0' ); if ( $threeDigit % 8 == 0) $count ++; } // Considering the number // formed by the last digit // and the first two digits $threeDigit = ( $n [ $len - 1] - '0' ) * 100 + ( $n [0] - '0' ) * 10 + ( $n [1] - '0' ); if ( $threeDigit % 8 == 0) $count ++; // Considering the number // formed by the last two // digits and the first digit $threeDigit = ( $n [ $len - 2] - '0' ) * 100 + ( $n [ $len - 1] - '0' ) * 10 + ( $n [0] - '0' ); if ( $threeDigit % 8 == 0) $count ++; // required count // of rotations return $count ; } // Driver Code $n = "43262488612" ; echo "Rotations: " . countRotationsDivBy8( $n ); // This code is contributed by mits. ?> |
Javascript
<script> // Javascript program to count all // rotations divisible by 8 // Function to count of all // rotations divisible by 8 function countRotationsDivBy8(n) { let len = n.length; let count = 0; // For single digit number if (len == 1) { let oneDigit = n[0] - '0' ; if (oneDigit % 8 == 0) return 1; return 0; } // For two-digit numbers // (considering all pairs) if (len == 2) { // first pair let first = (n[0] - '0' ) * 10 + (n[1] - '0' ); // second pair let second = (n[1] - '0' ) * 10 + (n[0] - '0' ); if (first % 8 == 0) count++; if (second % 8 == 0) count++; return count; } // Considering all // three-digit sequences let threeDigit; for (let i = 0; i < (len - 2); i++) { threeDigit = (n[i] - '0' ) * 100 + (n[i + 1] - '0' ) * 10 + (n[i + 2] - '0' ); if (threeDigit % 8 == 0) count++; } // Considering the number // formed by the last digit // and the first two digits threeDigit = (n[len - 1] - '0' ) * 100 + (n[0] - '0' ) * 10 + (n[1] - '0' ); if (threeDigit % 8 == 0) count++; // Considering the number // formed by the last two // digits and the first digit threeDigit = (n[len - 2] - '0' ) * 100 + (n[len - 1] - '0' ) * 10 + (n[0] - '0' ); if (threeDigit % 8 == 0) count++; // Required count // of rotations return count; } // Driver Code let n = "43262488612" ; document.write( "Rotations: " + countRotationsDivBy8(n)); // This code is contributed by _saurabh_jaiswal </script> |
Output:
Rotations: 4
Time Complexity : O(n), where n is the number of digits in input number.
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!