Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICount of square free divisors of a given number

Count of square free divisors of a given number

Given an integer N, the task is to count the number of square-free divisors of the given number. 

A number is said to be square-free, if no prime factor divides it more than once, i.e., the largest power of a prime factor that divides N is one.

 Examples: 

Input: N = 72 
Output:
Explanation: 2, 3, 6 are the three possible square free numbers that divide 72.

Input: N = 62290800 
Output: 31 
 

Naive Approach: 
For every integer N, find its factors and check if it is a square-free number or not. If it is a square-free number then increase the count or proceed to the next number otherwise. Finally, print the count which gives us the required number of square-free divisors of N
Time complexity: O(N3/2)

Efficient Approach: 
Follow the steps below to solve the problem:  

  • From the definition of square-free numbers, it can be understood that by finding out all the prime factors of the given number N, all the possible square-free numbers that can divide N can be found out.
  • Let the number of prime factors of N be X. Therefore, 2X – 1 square-free numbers can be formed using these X prime factors.
  • Since each of these X prime factors is a factor of N, therefore any product combination of these X prime factors is also a factor of N and thus there will be 2X – 1 square free divisors of N.

Illustration: 

  • N = 72
  • Prime factors of N are 2, 3.
  • Hence, the three possible square free numbers generated from these two primes are 2, 3 and 6.
  • Hence, the total square-free divisors of 72 are 3( = 22 – 1).

Below is the implementation of the above approach: 

C++




// C++ Program to find the square
// free divisors of a given number
#include <bits/stdc++.h>
using namespace std;
 
// The function to check
// if a number is prime or not
bool IsPrime(int i)
{
    // If the number is even
    // then its not prime
    if (i % 2 == 0 && i != 2)
        return false;
 
    else {
        for (int j = 3;
             j <= sqrt(i); j += 2) {
            if (i % j == 0)
                return false;
        }
        return true;
    }
}
 
// Driver Code
int main()
{
    // Stores the count of
    // distinct prime factors
    int c = 0;
    int N = 72;
 
    for (int i = 2;
         i <= sqrt(N); i++) {
 
        if (IsPrime(i)) {
            if (N % i == 0) {
                c++;
                if (IsPrime(N / i)
                    && i != (N / i)) {
                    c++;
                }
            }
        }
    }
 
    // Print the number of
    // square-free divisors
    cout << pow(2, c) - 1
         << endl;
    return 0;
}


Java




// Java program to find the square
// free divisors of a given number
import java.util.*;
 
class GFG{
     
// The function to check
// if a number is prime or not
static boolean IsPrime(int i)
{
     
    // If the number is even
    // then its not prime
    if (i % 2 == 0 && i != 2)
        return false;
    else
    {
        for(int j = 3;
                j <= Math.sqrt(i);
                j += 2)
        {
           if (i % j == 0)
               return false;
        }
        return true;
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // Stores the count of
    // distinct prime factors
    int c = 0;
    int N = 72;
     
    for(int i = 2;
            i <= Math.sqrt(N); i++)
    {
       if (IsPrime(i))
       {
           if (N % i == 0)
           {
               c++;
               if (IsPrime(N / i) &&
                     i != (N / i))
                   c++;
           }
       }
    }
     
    // Print the number of
    // square-free divisors
    System.out.print(Math.pow(2, c) - 1);
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program to find the square
# free divisors of a given number
import math
 
# The function to check
# if a number is prime or not
def IsPrime(i):
     
    # If the number is even
    # then its not prime
    if (i % 2 == 0 and i != 2):
        return 0;
         
    else:
        for j in range(3, int(math.sqrt(i) + 1), 2):
            if (i % j == 0):
                return 0;
                 
        return 1;
 
# Driver code
 
# Stores the count of
# distinct prime factors
c = 0;
N = 72;
 
for i in range(2, int(math.sqrt(N)) + 1):
    if (IsPrime(i)):
        if (N % i == 0):
            c = c + 1
 
            if (IsPrime(N / i) and
                 i != (N / i)):
                c = c + 1
                 
# Print the number of
# square-free divisors    
print (pow(2, c) - 1)
 
# This code is contributed by sanjoy_62


C#




// C# program to find the square
// free divisors of a given number
using System;
class GFG{
     
// The function to check
// if a number is prime or not
static Boolean IsPrime(int i)
{
     
    // If the number is even
    // then its not prime
    if (i % 2 == 0 && i != 2)
        return false;
    else
    {
        for(int j = 3;
                j <= Math.Sqrt(i);
                j += 2)
        {
        if (i % j == 0)
            return false;
        }
        return true;
    }
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Stores the count of
    // distinct prime factors
    int c = 0;
    int N = 72;
     
    for(int i = 2;
            i <= Math.Sqrt(N); i++)
    {
        if (IsPrime(i))
        {
            if (N % i == 0)
            {
                c++;
                if (IsPrime(N / i) &&
                        i != (N / i))
                    c++;
            }
        }
    }
     
    // Print the number of
    // square-free divisors
    Console.Write(Math.Pow(2, c) - 1);
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
 
// Javascript program to find the square
// free divisors of a given number
 
// The function to check
// if a number is prime or not
function IsPrime(i)
{
     
    // If the number is even
    // then its not prime
    if (i % 2 == 0 && i != 2)
        return false;
    else
    {
        for(j = 3; j <= Math.sqrt(i); j += 2)
        {
            if (i % j == 0)
                return false;
        }
        return true;
    }
}
 
// Driver code
 
// Stores the count of
// distinct prime factors
var c = 0;
var N = 72;
 
for(i = 2; i <= Math.sqrt(N); i++)
{
    if (IsPrime(i))
    {
        if (N % i == 0)
        {
            c++;
             
            if (IsPrime(N / i) &&
                  i != (N / i))
                c++;
        }
    }
}
 
// Print the number of
// square-free divisors
document.write(Math.pow(2, c) - 1);
 
// This code is contributed by aashish1995
 
</script>


Output: 

3

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments