Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck which player visits more number of Nodes

Check which player visits more number of Nodes

Given a tree with N nodes. Two players A and B start from node 1 and node N respectively. A can visit all the adjacent nodes to the nodes already visited by A but can not visit any nodes which is already visited by B and similarly for B also.
The player who visits more cities win. Find the player who wins if they both play optimally.

Examples: 

Input: 

Output: A wins

Approach: The optimal solution is that both the Player starts visiting the nodes which lie in the path connecting node 1 and node N. This is because one player cannot visit the nodes already visited by another player so each player will try to limit the number of nodes that can be visited by another player. Then it will be easy to count the number of nodes that can be visited by each player and find out the winner.

The DFS will be used to find out the path between two nodes and mark them one by one like 1 or 2, 1 for A and 2 for B and then mark all the adjacent unvisited nodes with the respective value and then calculate the count of nodes of A and B.

Below is the implementation of the above approach:  

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Vector to store Tree
vector<vector<int> > graph;
 
// To check if there
// is path or not
int found = 0, n;
 
// Path and temporary vector
vector<int> path, temp;
 
// Count of A and B
int c_A = 0, c_B = 0;
 
// Function to find the path connecting 1 to n
void find(int i, int prev)
{
    // Push the ith node
    temp.push_back(i);
 
    // If we reached our destination
    if (i == n) {
        path = (temp);
        return;
    }
    for (int j = 0; j < graph[i].size(); j++)
        if (graph[i][j] != prev) {
 
            // Dfs for its children
            find(graph[i][j], i);
        }
 
    // Remove the node
    temp.pop_back();
}
 
// Function to mark all the adjacent
// unvisited nodes
void mark(int i, int visited[], int c)
{
    if (!visited[i]) {
 
        // Increase the count
        if (c == 1)
            c_A++;
        else
            c_B++;
    }
 
    visited[i] = c;
 
    // Increase the count
    if (c == 1)
        c_A++;
    else
        c_B++;
 
    // Dfs for all its unvisited adjacent nodes
    for (int j = 0; j < graph[i].size(); j++)
        if (!visited[graph[i][j]])
            mark(graph[i][j], visited, c);
}
 
// Function to find the winner among the players
void findWinner()
{
    // Finds the path
    find(1, -1);
 
    int visited[n + 1] = { 0 };
 
    for (int i = 0; i < path.size(); i++) {
 
        // Mark nodes visited by
        // A as 1 and B as 2
        if (i < ceil(path.size() / 2.0))
            visited[path[i]] = 1, c_A++;
        else
            visited[path[i]] = 2, c_B++;
    }
 
    // Mark all the adjacent unvisited nodes
    for (int i = 0; i < path.size(); i++)
        mark(path[i],
             visited,
             visited[path[i]]);
 
    if (c_A > c_B)
        cout << "A wins";
    else if (c_A < c_B)
        cout << "B wins";
    else
        cout << "Draw";
}
 
// Driver code
int main()
{
    n = 7;
    graph.clear();
    graph.resize(n + 1);
 
    // Graph
    graph[6].push_back(4);
    graph[4].push_back(6);
    graph[6].push_back(5);
    graph[5].push_back(6);
    graph[5].push_back(7);
    graph[7].push_back(5);
    graph[5].push_back(2);
    graph[2].push_back(5);
    graph[3].push_back(4);
    graph[4].push_back(3);
    graph[1].push_back(4);
    graph[4].push_back(1);
 
    findWinner();
 
    return 0;
}


Java




// Java implementation of the
// above approach
import java.util.*;
class GFG{
 
// Vector to store Tree
static Vector<Integer> []graph;
 
// To check if there
// is path or not
static int found = 0, n;
 
// Path and temporary vector
static Vector<Integer> path =
       new Vector<>();
static Vector<Integer> temp =
       new Vector<>();
 
// Count of A and B
static int c_A = 0, c_B = 0;
 
// Function to find the path
// connecting 1 to n
static void find(int i,
                 int prev)
{
  // Push the ith node
  temp.add(i);
 
  // If we reached our
  // destination
  if (i == n)
  {
    path = (temp);
    return;
  }
  for (int j = 0;
           j < graph[i].size(); j++)
    if (graph[i].get(j) != prev)
    {
      // Dfs for its children
      find(graph[i].get(j), i);
    }
 
  // Remove the node
  temp.remove(temp.size() - 1);
}
 
// Function to mark all the
// adjacent unvisited nodes
static void mark(int i,
                 int visited[],
                 int c)
{
  if (visited[i] > 0)
  {
    // Increase the count
    if (c == 1)
      c_A++;
    else
      c_B++;
  }
 
  visited[i] = c;
 
  // Increase the count
  if (c == 1)
    c_A++;
  else
    c_B++;
 
  // Dfs for all its unvisited
  // adjacent nodes
  for (int j = 0;
           j < graph[i].size(); j++)
    if (visited[graph[i].get(j)] > 0)
      mark(graph[i].get(j),
           visited, c);
}
 
// Function to find the winner
// among the players
static void findWinner()
{
  // Finds the path
  find(1, -1);
 
  int visited[] = new int[n + 1];
 
  for (int i = 0;
           i < path.size(); i++)
  {
    // Mark nodes visited by
    // A as 1 and B as 2
    if (i < Math.ceil(path.size() / 2.0))
    {
      visited[path.get(i)] = 1;
      c_A++;
    }
    else
    {
      visited[path.get(i)] = 2;
      c_B++;
    }
  }
 
  // Mark all the adjacent
  // unvisited nodes
  for (int i = 0;
           i < path.size(); i++)
    mark(path.get(i),
         visited,
         visited[path.get(i)]);
 
  if (c_A > c_B)
    System.out.print("A wins");
  else if (c_A < c_B)
    System.out.print("B wins");
  else
    System.out.print("Draw");
}
 
// Driver code
@SuppressWarnings("unchecked")
public static void main(String[] args)
{
  n = 7;
  graph = new Vector[n + 1];
  for (int i = 0;
           i < graph.length; i++)
    graph[i] = new Vector<Integer>();
   
  // Graph
  graph[6].add(4);
  graph[4].add(6);
  graph[6].add(5);
  graph[5].add(6);
  graph[5].add(7);
  graph[7].add(5);
  graph[5].add(2);
  graph[2].add(5);
  graph[3].add(4);
  graph[4].add(3);
  graph[1].add(4);
  graph[4].add(1);
 
  findWinner();
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 implementation of the above approach
from math import ceil, floor
 
# Vector to store Tree
graph = [[] for i in range(1000)]
 
# To check if there
# is path or not
found = 0
n = 0
 
# Path and temporary vector
path = []
temp = []
 
# Count of A and B
c_A = 0
c_B = 0
 
# Function to find the path connecting 1 to n
def find(i, prev):
    global c_A, c_B, path
     
    # Push the ith node
    temp.append(i)
 
    # If we reached our destination
    if (i == n):
        path = temp
        return
 
    for j in graph[i]:
        if j != prev:
 
            # Dfs for its children
            find(j, i)
 
    # Remove the node
    del temp[-1]
 
# Function to mark all the adjacent
# unvisited nodes
def mark(i, visited, c):
    global c_B, c_A
 
    if visited[i] == 0:
 
        # Increase the count
        if (c == 1):
            c_A += 1
        else:
            c_B += 1
 
    visited[i] = c
 
    # Increase the count
    if (c == 1):
        c_A += 1
    else:
        c_B += 1
 
    # Dfs for all its unvisited adjacent nodes
    for j in graph[i]:
        if (visited[j] == 0):
            mark(j, visited, c)
 
# Function to find the winner among the players
def findWinner():
    global c_B, c_A, path
     
    # Finds the path
    find(1, -1)
 
    visited = [0 for i in range(n + 1)]
 
    for i in range(len(path)):
 
        # Mark nodes visited by
        # A as 1 and B as 2
        if (i < ceil(len(path) / 2.0)):
            visited[path[i]] = 1
            c_A += 1
        else:
            visited[path[i]] = 2
            c_B += 1
 
    # Mark all the adjacent unvisited nodes
    for i in path:
        mark(i, visited, visited[i])
 
    if (c_A > c_B):
        print("A wins")
    elif (c_A < c_B):
        print("B wins")
    else:
        print("Draw")
 
# Driver code
n = 7
 
# Graph
graph[6].append(4)
graph[4].append(6)
graph[6].append(5)
graph[5].append(6)
graph[5].append(7)
graph[7].append(5)
graph[5].append(2)
graph[2].append(5)
graph[3].append(4)
graph[4].append(3)
graph[1].append(4)
graph[4].append(1)
 
findWinner()
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the
// above approach
using System;
using System.Collections.Generic;
class GFG{
 
// List to store Tree
static List<int> []graph;
 
// To check if there
// is path or not
static int found = 0, n;
 
// Path and temporary vector
static List<int> path =
       new List<int>();
static List<int> temp =
       new List<int>();
 
// Count of A and B
static int c_A = 0, c_B = 0;
 
// Function to find the path
// connecting 1 to n
static void find(int i,
                 int prev)
{
  // Push the ith node
  temp.Add(i);
 
  // If we reached our
  // destination
  if (i == n)
  {
    path = (temp);
    return;
  }
  for (int j = 0;
           j < graph[i].Count; j++)
    if (graph[i][j] != prev)
    {
      // Dfs for its children
      find(graph[i][j], i);
    }
 
  // Remove the node
  temp.Remove(temp.Count - 1);
}
 
// Function to mark all the
// adjacent unvisited nodes
static void mark(int i,
                 int []visited,
                 int c)
{
  if (visited[i] > 0)
  {
    // Increase the count
    if (c == 1)
      c_A++;
    else
      c_B++;
  }
 
  visited[i] = c;
 
  // Increase the count
  if (c == 1)
    c_A++;
  else
    c_B++;
 
  // Dfs for all its unvisited
  // adjacent nodes
  for (int j = 0;
           j < graph[i].Count; j++)
    if (visited[graph[i][j]] > 0)
      mark(graph[i][j],
           visited, c);
}
 
// Function to find the winner
// among the players
static void findWinner()
{
  // Finds the path
  find(1, -1);
 
  int []visited = new int[n + 1];
 
  for (int i = 0;
           i < path.Count; i++)
  {
    // Mark nodes visited by
    // A as 1 and B as 2
    if (i < Math.Ceiling(path.Count / 2.0))
    {
      visited[path[i]] = 1;
      c_A++;
    }
    else
    {
      visited[path[i]] = 2;
      c_B++;
    }
  }
 
  // Mark all the adjacent
  // unvisited nodes
  for (int i = 0;
           i < path.Count; i++)
    mark(path[i],
         visited,
         visited[path[i]]);
 
  if (c_A > c_B)
    Console.Write("A wins");
  else if (c_A < c_B)
    Console.Write("B wins");
  else
    Console.Write("Draw");
}
 
// Driver code
 
public static void Main(String[] args)
{
  n = 7;
  graph = new List<int>[n + 1];
   
  for (int i = 0;
           i < graph.Length; i++)
    graph[i] = new List<int>();
   
  // Graph
  graph[6].Add(4);
  graph[4].Add(6);
  graph[6].Add(5);
  graph[5].Add(6);
  graph[5].Add(7);
  graph[7].Add(5);
  graph[5].Add(2);
  graph[2].Add(5);
  graph[3].Add(4);
  graph[4].Add(3);
  graph[1].Add(4);
  graph[4].Add(1);
 
  findWinner();
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// Javascript implementation of the
// above approach
 
// Vector to store Tree
let graph;
 
// To check if there
// is path or not
let found = 0, n;
 
// Path and temporary vector
let path = [];
let temp = [];
 
// Count of A and B
let c_A = 0, c_B = 0;
 
// Function to find the path
// connecting 1 to n
function find(i, prev)
{
     
    // Push the ith node
    temp.push(i);
  
    // If we reached our
    // destination
    if (i == n)
    {
        path = (temp);
        return;
    }
    for(let j = 0;
            j < graph[i].length; j++)
    {
        if (graph[i][j] != prev)
        {
            // Dfs for its children
            find(graph[i][j], i);
        }
    }
    // Remove the node
    temp.pop();
}
 
// Function to mark all the
// adjacent unvisited nodes
function mark(i, visited, c)
{
    if (visited[i] > 0)
    {
         
        // Increase the count
        if (c == 1)
            c_A++;
        else
            c_B++;
    }
     
    visited[i] = c;
     
    // Increase the count
    if (c == 1)
        c_A++;
    else
        c_B++;
     
    // Dfs for all its unvisited
    // adjacent nodes
    for(let j = 0;
            j < graph[i].length; j++)
        if (visited[graph[i][j]] > 0)
            mark(graph[i][j], visited, c);
}
 
// Function to find the winner
// among the players
function findWinner()
{
     
    // Finds the path
    find(1, -1);
     
    let visited = new Array(n + 1);
     
    for(let i = 0;
            i < path.length; i++)
    {
         
        // Mark nodes visited by
        // A as 1 and B as 2
        if (i < Math.ceil(path.length / 2.0))
        {
            visited[path[i]] = 1;
            c_A++;
        }
        else
        {
            visited[path[i]] = 2;
            c_B++;
        }
    }
     
    // Mark all the adjacent
    // unvisited nodes
    for(let i = 0;
            i < path.length; i++)
        mark(path[i], visited,
             visited[path[i]]);
     
    if (c_A > c_B)
        document.write("A wins");
    else if (c_A < c_B)
        document.write("B wins");
    else
        document.write("Draw");
}
 
// Driver code
n = 7;
graph = new Array(n + 1);
for(let i = 0;
        i < graph.length; i++)
    graph[i] = [];
 
// Graph
graph[6].push(4);
graph[4].push(6);
graph[6].push(5);
graph[5].push(6);
graph[5].push(7);
graph[7].push(5);
graph[5].push(2);
graph[2].push(5);
graph[3].push(4);
graph[4].push(3);
graph[1].push(4);
graph[4].push(1);
 
findWinner();
 
// This code is contributed by patel2127
 
</script>


Output: 

A wins

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments