Thursday, January 9, 2025
Google search engine

Stormer Numbers

Given a number ‘n’, the task is to generate the first ‘n’ Stormer numbers.
A Stormer Number is a positive integer ‘i’ such that the greatest prime factor of the term i*i + 1       is greater than or equal to 2*i
For example, 5 is a Stormer number because the greatest prime factor of 26(i.e 5*5 + 1) is 13 which is greater than or equal to 10(i.e 2*5) 
 

Input :
Output : 1 2 4 5 6 
Here 3 is not a Stormer number because the greatest prime 
factor of 10(i.e 3*3 + 1) is 5, which is not greater than 
or equal to 6(i.e 2*3)
Input : 10 
Output : 1 2 4 5 6 9 10 11 12 14 
 

  1. For a number ‘i’, first find the largest prime factor of the number i*i + 1.
  2. Next, test whether that prime factor is greater than or equal to 2*i.
  3. If it is greater then ‘i’ is a Stormer number.

Below is the implementation of above approach:
 

C++




// C++ program to print
// Stormer numbers
// Function to find
// largest prime factor
 
#include <bits/stdc++.h>
using namespace std;
 
 int maxPrimeFactors(int n)
{
    // Initialize the maximum
    // prime factor variable
    // with the lowest one
    int maxPrime = -1;
 
    // Print the number of
    // 2's that divide n
    while(n % 2 == 0)
    {
        maxPrime = 2;
        n /= 2;
    }
 
    // n must be odd at this
    // point, thus skip the
    // even numbers and iterate
    // only for odd integers
    for(int i = 3; i < (int)(sqrt(n)+ 1); i += 2)
        while(n % i == 0)
        {
            maxPrime = i;
            n /= i;
        }
 
    // This condition is to handle
    // the case when n is a prime
    // number greater than 2
    if (n > 2)
        maxPrime = n;
 
    return (int)(maxPrime);
}
 
// Function to generate
// Stormer Numbers
 int stormer(int n)
{
    int i = 1;
     
    // Stores the number of
    // Stormer numbers found
    int count = 0;
    while(count < n)
    {
        int t = i * i + 1;
        if (maxPrimeFactors(t) >= 2 * i)
        {
            cout << i ;
            cout <<" ";
            count += 1;
        }
        i += 1;
    }
    return i;
}
 
    // Driver Code
int main() {
 
    int n = 10;
    stormer(n);
 
    }


Java




// Java program to print
// Stormer numbers
 
// Function to find
// largest prime factor
 
import java.io.*;
 
class GFG {
static int maxPrimeFactors(int n)
{
    // Initialize the maximum
    // prime factor variable
    // with the lowest one
    int maxPrime = -1;
 
    // Print the number of
    // 2's that divide n
    while(n % 2 == 0)
    {
        maxPrime = 2;
        n /= 2;
    }
 
    // n must be odd at this
    // point, thus skip the
    // even numbers and iterate
    // only for odd integers
    for(int i = 3; i < (int)(Math.sqrt(n)+ 1); i += 2)
        while(n % i == 0)
        {
            maxPrime = i;
            n /= i;
        }
 
    // This condition is to handle
    // the case when n is a prime
    // number greater than 2
    if (n > 2)
        maxPrime = n;
 
    return (int)(maxPrime);
}
 
// Function to generate
// Stormer Numbers
static int stormer(int n)
{
    int i = 1;
     
    // Stores the number of
    // Stormer numbers found
    int count = 0;
    while(count < n)
    {
        int t = i * i + 1;
        if (maxPrimeFactors(t) >= 2 * i)
        {
            System.out.print (i +" ");
            count += 1;
        }
        i += 1;
    }
    return i;
}
 
    // Driver Code
    public static void main (String[] args) {
     
    int n = 10;
    stormer(n);
 
    }
}
//This code is contributed akt_mit


Python3




# Python program to print Stormer numbers
 
from __future__ import print_function
 
# Function to find largest prime factor
 
def maxPrimeFactors(n):
    # Initialize the maximum prime factor
    # variable with the lowest one
    maxPrime = -1
 
    # Print the number of 2's that divide n
    while n % 2 == 0:
        maxPrime = 2
        n /= 2
 
    # n must be odd at this point, thus skip
    # the even numbers and iterate only for
    # odd integers
    for i in range(3, int(n**0.5)+1, 2):
        while n % i == 0:
            maxPrime = i
            n /= i
 
    # This condition is to handle the case when
    # n is a prime number greater than 2
    if n > 2:
        maxPrime = n
 
    return int(maxPrime)
 
# Function to generate Stormer Numbers
 
def stormer(n):
    i = 1
    # Stores the number of Stormer numbers found
    count = 0
    while(count < n):
        t = i * i + 1
        if maxPrimeFactors(t) >= 2 * i:
            print(i, end =' ')
            count += 1
        i += 1
 
# Driver Method
 
if __name__=='__main__':
    n = 10
    stormer(n)


C#




// C#  program to print
// Stormer numbers
using System;
 
// Function to find
// largest prime factor
public class GFG{
     
    static int maxPrimeFactors(int n)
{
    // Initialize the maximum
    // prime factor variable
    // with the lowest one
    int maxPrime = -1;
 
    // Print the number of
    // 2's that divide n
    while(n % 2 == 0)
    {
        maxPrime = 2;
        n /= 2;
    }
 
    // n must be odd at this
    // point, thus skip the
    // even numbers and iterate
    // only for odd integers
    for(int i = 3; i < (int)(Math.Sqrt(n)+ 1); i += 2)
        while(n % i == 0)
        {
            maxPrime = i;
            n /= i;
        }
 
    // This condition is to handle
    // the case when n is a prime
    // number greater than 2
    if (n > 2)
        maxPrime = n;
 
    return (int)(maxPrime);
}
 
// Function to generate
// Stormer Numbers
static int stormer(int n)
{
    int i = 1;
     
    // Stores the number of
    // Stormer numbers found
    int count = 0;
    while(count < n)
    {
        int t = i * i + 1;
        if (maxPrimeFactors(t) >= 2 * i)
        {
            Console.Write(i +" ");
            count += 1;
        }
        i += 1;
    }
    return i;
}
 
    // Driver Code
    static public void Main (){
            int n = 10;
            stormer(n);
 
    }
}
//This code is contributed akt_mit


PHP




<?php
// PHP program to print
// Stormer numbers
 
// Function to find
// largest prime factor
function maxPrimeFactors($n)
{
    // Initialize the maximum
    // prime factor variable
    // with the lowest one
    $maxPrime = -1;
 
    // Print the number of
    // 2's that divide n
    while($n % 2 == 0)
    {
        $maxPrime = 2;
        $n /= 2;
    }
 
    // n must be odd at this
    // point, thus skip the
    // even numbers and iterate
    // only for odd integers
    for($i = 3; $i < (int)(sqrt($n)+ 1); $i += 2)
        while($n % $i == 0)
        {
            $maxPrime = $i;
            $n /= $i;
        }
 
    // This condition is to handle
    // the case when n is a prime
    // number greater than 2
    if ($n > 2)
        $maxPrime = $n;
 
    return (int)($maxPrime);
}
 
// Function to generate
// Stormer Numbers
function stormer($n)
{
    $i = 1;
     
    // Stores the number of
    // Stormer numbers found
    $count = 0;
    while($count < $n)
    {
        $t = $i * $i + 1;
        if (maxPrimeFactors($t) >= 2 * $i)
        {
            echo $i." ";
            $count += 1;
        }
        $i += 1;
    }
}
 
// Driver Code
$n = 10;
stormer($n);
 
// This code is contributed
// by mits
?>


Javascript




<script>
    // Javascript program to print Stormer numbers
     
    // Function to find largest prime factor
    function maxPrimeFactors(n)
    {
     
        // Initialize the maximum
        // prime factor variable
        // with the lowest one
        let maxPrime = -1;
 
        // Print the number of
        // 2's that divide n
        while(n % 2 == 0)
        {
            maxPrime = 2;
            n = parseInt(n / 2, 10);
        }
 
        // n must be odd at this
        // point, thus skip the
        // even numbers and iterate
        // only for odd integers
        for(let i = 3; i < parseInt(Math.sqrt(n)+ 1); i += 2)
            while(n % i == 0)
            {
                maxPrime = i;
                n = parseInt(n / i, 10);
            }
 
        // This condition is to handle
        // the case when n is a prime
        // number greater than 2
        if (n > 2)
            maxPrime = n;
 
        return (maxPrime);
    }
 
    // Function to generate
    // Stormer Numbers
    function stormer(n)
    {
        let i = 1;
 
        // Stores the number of
        // Stormer numbers found
        let count = 0;
        while(count < n)
        {
            let t = i * i + 1;
            if (maxPrimeFactors(t) >= 2 * i)
            {
                document.write(i +" ");
                count += 1;
            }
            i += 1;
        }
        return i;
    }
     
    let n = 10;
    stormer(n);
 
// This code is contributed by rameshtravel07.
</script>


Output: 

1 2 4 5 6 9 10 11 12 14

 

Time Complexity: O(k * sqrt(k)) where k is the nth Stormer number.

Space Complexity: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments