Friday, January 3, 2025
Google search engine
HomeData Modelling & AISum of largest divisor of numbers upto N not divisible by given...

Sum of largest divisor of numbers upto N not divisible by given prime number P

Given a number N and a prime number P, the task is to find the sum of the largest divisors of each number in the range [1, N], which is not divisible by P.

Examples: 

Input: N = 8, P = 2
Output: 22
Explanation: Numbers are in the range [1, 8].
Number                           Largest Divisor not divisible by P = 2
1                                                            1
2                                                            1
3                                                            3
4                                                            1
5                                                            5
6                                                            3
7                                                            7
8                                                            1
Sum of all divisors with given constraint = 22.

Input: N = 10, P = 5
Output: 43
Explanation: Numbers are in the range [1, 8].
Number                           Largest Divisor not divisible by P = 5
1                                                            1
2                                                            2
3                                                            3
4                                                            4
5                                                            1
6                                                            6
7                                                            7
8                                                            8
9                                                            9
10                                                          2
Sum of all divisors with given constraint = 43

Naive Approach: The naive idea is to find the divisors for each number in the range [1, N] and find the largest divisors which is not divisible by P and those numbers. Print the sum of all those largest divisors. 
Time Complexity: O(N3/2
Auxiliary Space: O(1)
Efficient Approach: The idea is to observe that the largest divisor of a number N not divisible by P would be N itself if N is not divisible by P. Else the required divisor will be the same as that of N/P. Below are the steps: 

  1. If N is not divisible by P, then the largest divisor will be N, add this to the final sum.
  2. If N is divisible by P, the required divisor will be the same as that of N/P.
  3. So, find the sum of all numbers which are not divisible by P and add to them divisors of those which are divisible by P separately.
  4. The total sum would be N*(N + 1)/2. Subtract the sum of those which are divisible by P and add their corresponding value by recursively calling the function to find the sum for N/P.

Below is the implementation of the above approach:
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of largest
// divisors of numbers in range 1 to N
// not divisible by prime number P
int func(int N, int P)
{
    // Total sum upto N
    int sumUptoN = (N * (N + 1) / 2);
    int sumOfMultiplesOfP;
 
    // If no multiple of P exist up to N
    if (N < P) {
        return sumUptoN;
    }
 
    // If only P itself is in the range
    // from 1 to N
    else if ((N / P) == 1) {
        return sumUptoN - P + 1;
    }
 
    // Sum of those that are divisible by P
    sumOfMultiplesOfP
        = ((N / P) * (2 * P + (N / P - 1) * P)) / 2;
 
    // Recursively function call to
    // find the sum for N/P
    return (sumUptoN
            + func(N / P, P)
            - sumOfMultiplesOfP);
}
 
// Driver Code
int main()
{
    // Given N and P
    int N = 10, P = 5;
 
    // Function Call
    cout << func(N, P) << "\n";
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
public class GFG{
 
// Function to find the sum of largest
// divisors of numbers in range 1 to N
// not divisible by prime number P
static int func(int N, int P)
{
     
    // Total sum upto N
    int sumUptoN = (N * (N + 1) / 2);
    int sumOfMultiplesOfP;
 
    // If no multiple of P exist up to N
    if (N < P)
    {
        return sumUptoN;
    }
 
    // If only P itself is in the range
    // from 1 to N
    else if ((N / P) == 1)
    {
        return sumUptoN - P + 1;
    }
 
    // Sum of those that are divisible by P
    sumOfMultiplesOfP = ((N / P) * (2 * P +
                         (N / P - 1) * P)) / 2;
 
    // Recursively function call to
    // find the sum for N/P
    return (sumUptoN + func(N / P, P) -
            sumOfMultiplesOfP);
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given N and P
    int N = 10, P = 5;
 
    // Function call
    System.out.println(func(N, P));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program for the
# above approach
 
# Function to find the sum
# of largest divisors of
# numbers in range 1 to N
# not divisible by prime number P
def func(N, P):
   
    # Total sum upto N
    sumUptoN = (N * (N + 1) / 2);
    sumOfMultiplesOfP = 0;
 
    # If no multiple of P exist
    # up to N
    if (N < P):
        return sumUptoN;
 
    # If only P itself is
    # in the range from 1
    # to N
    elif ((N / P) == 1):
        return sumUptoN - P + 1;
 
    # Sum of those that are
    # divisible by P
    sumOfMultiplesOfP = (((N / P) *
                         (2 * P +
                         (N / P - 1) *
                          P)) / 2);
 
    # Recursively function call to
    # find the sum for N/P
    return (sumUptoN +
            func(N / P, P) -
            sumOfMultiplesOfP);
 
# Driver Code
if __name__ == '__main__':
   
    # Given N and P
    N = 10;
    P = 5;
 
    # Function call
    print(func(N, P));
 
# This code is contributed by Rajput-Ji


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the sum of largest
// divisors of numbers in range 1 to N
// not divisible by prime number P
static int func(int N, int P)
{
     
    // Total sum upto N
    int sumUptoN = (N * (N + 1) / 2);
    int sumOfMultiplesOfP;
 
    // If no multiple of P exist up to N
    if (N < P)
    {
        return sumUptoN;
    }
 
    // If only P itself is in the range
    // from 1 to N
    else if ((N / P) == 1)
    {
        return sumUptoN - P + 1;
    }
 
    // Sum of those that are divisible by P
    sumOfMultiplesOfP = ((N / P) * (2 * P +
                         (N / P - 1) * P)) / 2;
 
    // Recursively function call to
    // find the sum for N/P
    return (sumUptoN + func(N / P, P) -
            sumOfMultiplesOfP);
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given N and P
    int N = 10, P = 5;
 
    // Function call
    Console.WriteLine(func(N, P));
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// JavaScript program for the above approach
 
// Function to find the sum of largest
// divisors of numbers in range 1 to N
// not divisible by prime number P
function func(N, P)
{
      
    // Total sum upto N
    let sumUptoN = (N * (N + 1) / 2);
    let sumOfMultiplesOfP;
  
    // If no multiple of P exist up to N
    if (N < P)
    {
        return sumUptoN;
    }
  
    // If only P itself is in the range
    // from 1 to N
    else if ((N / P) == 1)
    {
        return sumUptoN - P + 1;
    }
  
    // Sum of those that are divisible by P
    sumOfMultiplesOfP = ((N / P) * (2 * P +
                         (N / P - 1) * P)) / 2;
  
    // Recursively function call to
    // find the sum for N/P
    return (sumUptoN + func(N / P, P) -
            sumOfMultiplesOfP);
}
       
// Driver Code
     
    // Given N and P
    let N = 10, P = 5;
  
    // Function call
    document.write(func(N, P));
                   
</script>


Output: 

43

 

Time Complexity: O(logPN) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments