Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind middle point segment from given segment lengths

Find middle point segment from given segment lengths

Given an array arr[] of size M. The array represents segment lengths of different sizes. These segments divide a line beginning with 0. The value of arr[0] represents a segment from 0 arr[0], value of arr[1] represents segment from arr[0] to arr[1], and so on. 
The task is to find the segment which contains the middle point, If the middle segment does not exist, print ‘-1’.

Examples: 

Input: arr = {3, 2, 8} 
Output:
The three segments are (0, 3), (3, 5), (5, 13) 
middle point is 6.5 which is in the 3rd segment. 

Input: arr = {3, 2, 5} 
Output: -1 
Middle point is 5 which is between segments 2 and 3. 

Approach: The middle point will always be N / 2. Now, check in which segment does this point exist and print the segment number. If it is the starting or ending for any segment then print ‘-1’.

Below is the implementation of the above approach:

C++




// C/C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function that returns the segment for the
// middle point
int findSegment(int n, int m, int segment_length[])
{
 
    // the middle point
    double meet_point = (1.0 * n) / 2.0;
    int sum = 0;
 
    // stores the segment index
    int segment_number = 0;
 
    for (int i = 0; i < m; i++) {
 
        // increment sum by
        // length of the segment
        sum += segment_length[i];
 
        // if the middle is
        // in between two segments
        if ((double)sum == meet_point) {
            segment_number = -1;
            break;
        }
 
        // if sum is greater
        // than middle point
        if (sum > meet_point) {
            segment_number = i + 1;
            break;
        }
    }
 
    return segment_number;
}
 
// Driver code
int main()
{
    int n = 13;
    int m = 3;
    int segment_length[] = { 3, 2, 8 };
 
    int ans = findSegment(n, m, segment_length);
    cout << (ans);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG {
 
    // Function that returns the segment for the
    // middle point
    static int findSegment(int n, int m,
                           int[] segment_length)
    {
 
        // the middle point
        double meet_point = (1.0 * n) / 2.0;
        int sum = 0;
 
        // stores the segment index
        int segment_number = 0;
 
        for (int i = 0; i < m; i++) {
 
            // increment sum by
            // length of the segment
            sum += segment_length[i];
 
            // if the middle is
            // in between two segments
            if ((double)sum == meet_point) {
                segment_number = -1;
                break;
            }
 
            // if sum is greater
            // than middle point
            if (sum > meet_point) {
                segment_number = i + 1;
                break;
            }
        }
 
        return segment_number;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 13;
        int m = 3;
        int[] segment_length = new int[] { 3, 2, 8 };
 
        int ans = findSegment(n, m, segment_length);
        System.out.println(ans);
    }
}


Python3




# Python 3 implementation of the approach
 
# Function that returns the segment for the
# middle point
 
 
def findSegment(n, m, segment_length):
    # the middle point
    meet_point = (1.0 * n) / 2.0
    sum = 0
 
    # stores the segment index
    segment_number = 0
 
    for i in range(0, m, 1):
        # increment sum by
        # length of the segment
        sum += segment_length[i]
 
        # if the middle is
        # in between two segments
        if (sum == meet_point):
            segment_number = -1
            break
 
        # if sum is greater
        # than middle point
        if (sum > meet_point):
            segment_number = i + 1
            break
 
    return segment_number
 
 
# Driver code
if __name__ == '__main__':
    n = 13
    m = 3
    segment_length = [3, 2, 8]
 
    ans = findSegment(n, m, segment_length)
    print(ans)
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
class GFG {
 
    // Function that returns the
    // segment for the middle point
    static int findSegment(int n, int m,
                           int[] segment_length)
    {
 
        // the middle point
        double meet_point = (1.0 * n) / 2.0;
        int sum = 0;
 
        // stores the segment index
        int segment_number = 0;
 
        for (int i = 0; i < m; i++) {
 
            // increment sum by
            // length of the segment
            sum += segment_length[i];
 
            // if the middle is
            // in between two segments
            if ((double)sum == meet_point) {
                segment_number = -1;
                break;
            }
 
            // if sum is greater
            // than middle point
            if (sum > meet_point) {
                segment_number = i + 1;
                break;
            }
        }
 
        return segment_number;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 13;
        int m = 3;
        int[] segment_length = new int[] { 3, 2, 8 };
 
        int ans = findSegment(n, m, segment_length);
        Console.WriteLine(ans);
    }
}
 
// This code is contributed
// by shs


PHP




<?php
// PHP ementation of the approach
 
// Function that returns the segment
// for the middle point
function findSegment($n, $m,
                     $segment_length)
{
 
    // the middle point
    $meet_point = (1.0 * $n) / 2.0;
    $sum = 0;
 
    // stores the segment index
    $segment_number = 0;
 
    for ($i = 0; $i < $m; $i++)
    {
 
        // increment sum by
        // length of the segment
        $sum += $segment_length[$i];
 
        // if the middle is
        // in between two segments
        if ((double)$sum == $meet_point)
        {
            $segment_number = -1;
            break;
        }
 
        // if sum is greater
        // than middle point
        if ($sum > $meet_point)
        {
            $segment_number = $i + 1;
            break;
        }
    }
 
    return $segment_number;
}
 
// Driver code
$n = 13;
$m = 3;
$segment_length = array( 3, 2, 8 );
 
$ans = findSegment($n, $m,
                   $segment_length);
echo ($ans);
     
// This code is contributed by ajit
?>


Javascript




<script>
// Javascript implementation of the approach
 
    // Function that returns the segment for the
    // middle point
    function findSegment( n, m ,segment_length) {
 
        // the middle point
        let meet_point = (1.0 * n) / 2.0;
        let sum = 0;
 
        // stores the segment index
        let segment_number = 0, i;
 
        for ( i = 0; i < m; i++) {
 
            // increment sum by
            // length of the segment
            sum += segment_length[i];
 
            // if the middle is
            // in between two segments
            if ( sum == meet_point) {
                segment_number = -1;
                break;
            }
 
            // if sum is greater
            // than middle point
            if (sum > meet_point) {
                segment_number = i + 1;
                break;
            }
        }
        return segment_number;
    }
 
    // Driver code    
    let n = 13;
    let m = 3;
    let segment_length =[ 3, 2, 8 ];
 
    let ans = findSegment(n, m, segment_length);
    document.write(ans);
 
// This code is contributed by Rajput-Ji
</script>


Output

3

Complexity Analysis:

  • Time Complexity: O(m), for traversal
  • Auxiliary Space: O(1), as no extra space is required
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments