Thursday, January 9, 2025
Google search engine
HomeData Modelling & AINumber of strictly increasing Buildings from right with distinct Colors

Number of strictly increasing Buildings from right with distinct Colors

Given an integer K   and two integer arrays H[] and C[] of size K   where H[] stores the height of consecutive buildings and C[] stores the color codes for those building in which they are painted. 
The task is to determine how many colors are visible at once from the view on the right i.e. right of the rightmost building.
Examples: 
 

Input: K = 5, H[] = {5, 4, 3, 2, 3}, C[] = {1, 2, 3, 4, 5} 
Output:
 

Input: K = 5, H[] = {1, 2, 3, 4, 5}, C[] = {3, 3, 3, 3, 3} 
Output:
 

 

Approach: On observing carefully, the above problem can be simplified to find the number of strictly increasing buildings from right with distinct colors. 
 

  1. Store the Last element of Height array in max variable.
  2. Now in an array Arr, at position corresponding to the element at the last of the colour array store 1.
  3. Now start traversing the Height array from n-2 to 0.
  4. If we get element greater than max then store that variable in max and again in array Arr, at position correspond to the ith element in the colour array store 1
     
  5. At last Count the number of 1’s present in the array Arr. It gives the total number of colour visible from the end.

Below is the implementation of the above approach:
 

C++




// C++ implementation of above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number of
// colors visible
int colourVisible(int height[], int colour[], int K)
{
    int arr[K + 1] = { 0 }, visible = 0;
 
    int max = height[K - 1];
    arr[colour[K - 1]] = 1;
 
    for (int i = K - 2; i >= 0; i--) {
        if (height[i] > max) {
            max = height[i];
            arr[colour[i]] = 1;
        }
    }
 
    // Count the Number of 1's
    for (int i = 1; i <= K; i++) {
        if (arr[i] == 1)
            visible++;
    }
 
    return visible;
}
 
// Driver code
int main()
{
    int height[] = { 3, 5, 1, 2, 3 };
    int colour[] = { 1, 2, 3, 4, 3 };
    int K = sizeof(colour) / sizeof(colour[0]);
 
    cout << colourVisible(height, colour, K);
 
    return 0;
}


Java




//Java  implementation of above approach
 
import java.io.*;
 
class GFG {
    // Function to return the number of
// colors visible
static int colourVisible(int height[], int colour[], int K)
{
    int arr[]=new int[K + 1] ;
    int visible = 0;
 
    int max = height[K - 1];
    arr[colour[K - 1]] = 1;
 
    for (int i = K - 2; i >= 0; i--) {
        if (height[i] > max) {
            max = height[i];
            arr[colour[i]] = 1;
        }
    }
 
    // Count the Number of 1's
    for (int i = 1; i <= K; i++) {
        if (arr[i] == 1)
            visible++;
    }
 
    return visible;
}
 
// Driver code
     
    public static void main (String[] args) {
     
    int height[] = { 3, 5, 1, 2, 3 };
    int colour[] = { 1, 2, 3, 4, 3 };
    int K = colour.length;
 
    System.out.println (colourVisible(height, colour, K));
    }
}


Python3




# Python3 implementation of above approach
 
# Function to return the number of
# colors visible
def colourVisible(height, colour, K):
    arr = [0 for i in range(K + 1)]
    visible = 0
 
    max = height[K - 1]
    arr[colour[K - 1]] = 1
     
    i = K - 2
    while(i >= 0):
        if (height[i] > max):
            max = height[i]
            arr[colour[i]] = 1
        i -= 1
     
    # Count the Number of 1 complement
    for i in range(1, K + 1, 1):
            if (arr[i] == 1):
                visible += 1
     
    return visible
 
# Driver code
if __name__ == '__main__':
    height = [3, 5, 1, 2, 3]
    colour = [1, 2, 3, 4, 3]
    K = len(colour)
 
    print(colourVisible(height, colour, K))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of above approach
using System;
 
class GFG
{
// Function to return the number of
// colors visible
static int colourVisible(int []height,
                         int []colour, int K)
{
    int []arr=new int[K + 1] ;
    int visible = 0;
 
    int max = height[K - 1];
    arr[colour[K - 1]] = 1;
 
    for (int i = K - 2; i >= 0; i--)
    {
        if (height[i] > max)
        {
            max = height[i];
            arr[colour[i]] = 1;
        }
    }
 
    // Count the Number of 1's
    for (int i = 1; i <= K; i++)
    {
        if (arr[i] == 1)
            visible++;
    }
 
    return visible;
}
 
// Driver code
static public void Main ()
{
    int []height = { 3, 5, 1, 2, 3 };
    int []colour = { 1, 2, 3, 4, 3 };
    int K = colour.Length;
     
    Console.WriteLine(colourVisible(height, colour, K));
}
}
 
// This code is contributed by Sach_Code


PHP




<?php
// PHP implementation of above approach
 
// Function to return the number of
// colors visible
function colourVisible($height, $colour, $K)
{
    $arr = array_fill(0, $K + 1, 0);
    $visible = 0;
 
    $max = $height[$K - 1];
    $arr[$colour[$K - 1]] = 1;
 
    for ($i = $K - 2; $i >= 0; $i--)
    {
        if ($height[$i] > $max)
        {
            $max = $height[$i];
            $arr[$colour[$i]] = 1;
        }
    }
 
    // Count the Number of 1's
    for ($i = 1; $i <= $K; $i++)
    {
        if ($arr[$i] == 1)
            $visible++;
    }
 
    return $visible;
}
 
// Driver code
$height = array( 3, 5, 1, 2, 3 );
$colour = array( 1, 2, 3, 4, 3 );
$K = count($colour);
 
echo colourVisible($height, $colour, $K);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript implementation of above approach
 
// Function to return the number of
// colors visible
function colourVisible(height, colour, K)
{
    var arr = Array(K+1).fill(0), visible = 0;
 
    var max = height[K - 1];
    arr[colour[K - 1]] = 1;
 
    for (var i = K - 2; i >= 0; i--) {
        if (height[i] > max) {
            max = height[i];
            arr[colour[i]] = 1;
        }
    }
 
    // Count the Number of 1's
    for (var i = 1; i <= K; i++) {
        if (arr[i] == 1)
            visible++;
    }
 
    return visible;
}
 
// Driver code
var height = [ 3, 5, 1, 2, 3 ];
var colour = [ 1, 2, 3, 4, 3 ];
var K = colour.length;
document.write( colourVisible(height, colour, K));
 
</script>


Output: 

2

 

Time Complexity: O(K), where K is the size of colour array
Auxiliary Space: O(K), as an extra size of K is used 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments