Friday, January 10, 2025
Google search engine
HomeData Modelling & AITwin Pythagorean triplets in an array

Twin Pythagorean triplets in an array

Given an array of integers arr[], the task is to check if there is a Twin Pythagorean Triplet in the array.

A Twin Pythagorean Triplet is a Pythagorean triplet (a, b, c) for which two values are consecutive integers. The first few twin triples are (3, 4, 5), (5, 12, 13), (7, 24, 25), (20, 21, 29), (9, 40, 41), (11, 60, 61), (13, 84, 85), (15, 112, 113), …. 

Examples

Input: arr[] = {3, 1, 4, 6, 5} 
Output: True
Explanation: 
There is a Twin Pythagorean triplet (3, 4, 5)

Input: arr[] = {6, 8, 10} 
Output: False 
Explanation:
62 + 82 = 102 
but in (6, 8, 10) there is no consecutive element. 
So There is no Twin Pythagorean triplet. 

Naive Approach: A simple solution is to run three loops, three loops pick three array elements and check if current three elements form a Twin Pythagorean Triplet.

Below is the implementation of above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if there exist
// a twin pythagorean triplet in
// the given array
bool isTriplet(int ar[], int n)
{
    // Loop to check if there is a
    // Pythagorean triplet in the array
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
 
            for (int k = j + 1; k < n; k++) {
 
                // Check if there is
                // consecutive triple
                if (abs(ar[i] - ar[j]) == 1
                    || abs(ar[j] - ar[k]) == 1
                    || abs(ar[i] - ar[k]) == 1) {
 
                    // Calculate square of
                    // array elements
                    int x = ar[i] * ar[i],
                        y = ar[j] * ar[j],
                        z = ar[k] * ar[k];
 
                    if (x == y + z
                        || y == x + z
                        || z == x + y)
                        return true;
                }
            }
        }
    }
 
    return false;
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 3, 1, 4, 6, 5 };
    int ar_size = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    isTriplet(arr, ar_size)
        ? cout << "Yes"
        : cout << "No";
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check if there exist
// a twin pythagorean triplet in
// the given array
static boolean isTriplet(int ar[], int n)
{
     
    // Loop to check if there is a
    // Pythagorean triplet in the array
    for(int i = 0; i < n; i++)
    {
        for(int j = i + 1; j < n; j++)
        {
            for(int k = j + 1; k < n; k++)
            {
                 
                // Check if there is
                // consecutive triple
                if (Math.abs(ar[i] - ar[j]) == 1 ||
                    Math.abs(ar[j] - ar[k]) == 1 ||
                    Math.abs(ar[i] - ar[k]) == 1)
                {
 
                    // Calculate square of
                    // array elements
                    int x = ar[i] * ar[i],
                        y = ar[j] * ar[j],
                        z = ar[k] * ar[k];
 
                    if (x == y + z ||
                        y == x + z ||
                        z == x + y)
                        return true;
                }
            }
        }
    }
    return false;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given array arr[]
    int arr[] = { 3, 1, 4, 6, 5 };
    int ar_size = arr.length;
 
    // Function call
    if(isTriplet(arr, ar_size))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program for the above approach
 
# Function to check if there exist
# a twin pythagorean triplet in
# the given array
def isTriplet(ar, n):
     
    # Loop to check if there is a
    # Pythagorean triplet in the array
    for i in range(n):
        for j in range(i + 1, n):
            for k in range(j + 1, n):
                 
                # Check if there is
                # consecutive triple
                if (abs(ar[i] - ar[j]) == 1 or
                    abs(ar[j] - ar[k]) == 1 or
                    abs(ar[i] - ar[k]) == 1):
                     
                        # Calculate square of
                        # array elements
                        x = ar[i] * ar[i]
                        y = ar[j] * ar[j]
                        z = ar[k] * ar[k]
                         
                        if (x == y + z or
                            y == x + z or
                            z == x + y):
                            return True
                             
    return False
 
# Driver Code
if __name__=='__main__':
     
    # Given array arr[]
    arr = [ 3, 1, 4, 6, 5 ]
    ar_size = len(arr)
     
    # Function call
    if isTriplet(arr, ar_size):
        print('Yes')
    else:
        print('No')
 
# This code is contributed by rutvik_56   


C#




// C# program for the above approach
using System;
class GFG{
 
// Function to check if there exist
// a twin pythagorean triplet in
// the given array
static bool isTriplet(int []ar, int n)
{
     
    // Loop to check if there is a
    // Pythagorean triplet in the array
    for(int i = 0; i < n; i++)
    {
        for(int j = i + 1; j < n; j++)
        {
            for(int k = j + 1; k < n; k++)
            {
                 
                // Check if there is
                // consecutive triple
                if (Math.Abs(ar[i] - ar[j]) == 1 ||
                    Math.Abs(ar[j] - ar[k]) == 1 ||
                    Math.Abs(ar[i] - ar[k]) == 1)
                {
 
                    // Calculate square of
                    // array elements
                    int x = ar[i] * ar[i],
                        y = ar[j] * ar[j],
                        z = ar[k] * ar[k];
 
                    if (x == y + z ||
                        y == x + z ||
                        z == x + y)
                        return true;
                }
            }
        }
    }
    return false;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given array []arr
    int []arr = { 3, 1, 4, 6, 5 };
    int ar_size = arr.Length;
 
    // Function call
    if(isTriplet(arr, ar_size))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to check if there exist
// a twin pythagorean triplet in
// the given array
function isTriplet(ar, n)
{
    // Loop to check if there is a
    // Pythagorean triplet in the array
    for (var i = 0; i < n; i++) {
        for (var j = i + 1; j < n; j++) {
 
            for (var k = j + 1; k < n; k++) {
 
                // Check if there is
                // consecutive triple
                if (Math.abs(ar[i] - ar[j]) == 1
                    || Math.abs(ar[j] - ar[k]) == 1
                    || Math.abs(ar[i] - ar[k]) == 1) {
 
                    // Calculate square of
                    // array elements
                    var x = ar[i] * ar[i],
                        y = ar[j] * ar[j],
                        z = ar[k] * ar[k];
 
                    if (x == y + z
                        || y == x + z
                        || z == x + y)
                        return true;
                }
            }
        }
    }
 
    return false;
}
 
// Driver Code
 
// Given array arr[]
var arr = [ 3, 1, 4, 6, 5 ];
var ar_size = arr.length;
 
// Function Call
isTriplet(arr, ar_size)
    ? document.write( "Yes")
    : document.write( "No");
 
// This code is contributed by itsok.
</script>


Output: 

Yes

 

Time Complexity: O(N3) 
Auxiliary Village: O(1)

Efficient Approach:

  • Do square of every element in input array. This step takes O(n) time.
  • Sort the squared array in increasing order. This step takes O(nLogn) time.
  • To find a triplet (a, b, c) such that a2 = b2 + c2 and atleast a pair is consecutive, do following.
    • Fix ‘a’ as last element of sorted array.
    • Now search for pair (b, c) in subarray between first element and ‘a’. A pair (b, c) with given sum can be found in O(n) time using meet in middle algorithm discussed in method 1 of this post.
    • If no pair found for current ‘a’, then move ‘a’ one position back and repeat the previous step.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to check if any of the
// two numbers are consecutive
// in the given triplet
bool isConsecutive(int a, int b, int c)
{
    return abs(a - b) == 1
           || abs(b - c) == 1
           || abs(c - a) == 1;
}
 
// Function to check if there exist a
// pythagorean triplet in the array
bool isTriplet(int arr[], int n)
{
 
    // Square array elements
    for (int i = 0; i < n; i++)
        arr[i] = arr[i] * arr[i];
 
    // Sort array elements
    sort(arr, arr + n);
 
    // Now fix one element one by one
    // and find the other two elements
    for (int i = n - 1; i >= 2; i--) {
 
        // To find the other two elements,
        // start two index variables from
        // two corners of the array and move
        // them toward each other
        int l = 0;
        int r = i - 1;
 
        while (l < r) {
 
            // A triplet found
            if (arr[l] + arr[r] == arr[i]
                && isConsecutive(sqrt(arr[l]),
                                sqrt(arr[r]),
                                sqrt(arr[i]))) {
 
                return true;
            }
 
            // Else either move 'l' or 'r'
            (arr[l] + arr[r] < arr[i])
                ? l++
                : r--;
        }
    }
 
    // If we reach here,
    // then no triplet found
    return false;
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 3, 1, 4, 6, 5 };
    int arr_size = sizeof(arr)
                   / sizeof(arr[0]);
 
    // Function Call
    isTriplet(arr, arr_size)
        ? cout << "Yes"
        : cout << "No";
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check if any of the
// two numbers are consecutive
// in the given triplet
static boolean isConsecutive(int a, int b, int c)
{
    return Math.abs(a - b) == 1 ||
           Math.abs(b - c) == 1 ||
           Math.abs(c - a) == 1;
}
 
// Function to check if there exist a
// pythagorean triplet in the array
static boolean isTriplet(int arr[], int n)
{
 
    // Square array elements
    for(int i = 0; i < n; i++)
        arr[i] = arr[i] * arr[i];
 
    // Sort array elements
    Arrays.sort(arr);
 
    // Now fix one element one by one
    // and find the other two elements
    for(int i = n - 1; i >= 2; i--)
    {
 
        // To find the other two elements,
        // start two index variables from
        // two corners of the array and move
        // them toward each other
        int l = 0;
        int r = i - 1;
 
        while (l < r)
        {
             
            // A triplet found
            if (arr[l] + arr[r] == arr[i] &&
                isConsective((int)Math.sqrt(arr[l]),
                             (int)Math.sqrt(arr[r]),
                             (int)Math.sqrt(arr[i])))
            {
                return true;
            }
 
            // Else either move 'l' or 'r'
            if(arr[l] + arr[r] < arr[i])
                l++;
            else
                r--;
        }
    }
 
    // If we reach here,
    // then no triplet found
    return false;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given array arr[]
    int arr[] = { 3, 1, 4, 6, 5 };
    int arr_size = arr.length;
 
    // Function call
    if(isTriplet(arr, arr_size))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program for the above approach
import math
 
# Function to check if any of the
# two numbers are consecutive
# in the given triplet
def isConsecutive(a, b, c):
     
    return bool(abs(a - b) == 1 or
                abs(b - c) == 1 or
                abs(c - a) == 1)
   
# Function to check if there exist a
# pythagorean triplet in the array
def isTriplet(arr, n):
   
    # Square array elements
    for i in range(n):
        arr[i] = arr[i] * arr[i]
   
    # Sort array elements
    arr.sort()
   
    # Now fix one element one by one
    # and find the other two elements
    for i in range(n - 1, 1, -1):
   
        # To find the other two elements,
        # start two index variables from
        # two corners of the array and move
        # them toward each other
        l = 0
        r = i - 1
   
        while (l < r):
   
            # A triplet found
            if (arr[l] + arr[r] == arr[i] and
                isConsective(math.sqrt(arr[l]),
                             math.sqrt(arr[r]),
                             math.sqrt(arr[i]))):
   
                return bool(True)
   
            # Else either move 'l' or 'r'
            if(arr[l] + arr[r] < arr[i]):
                l = l + 1
            else:
                r = r - 1
   
    # If we reach here,
    # then no triplet found
    return bool(False)
     
# Driver code
 
# Given array arr[]
arr = [ 3, 1, 4, 6, 5 ]
arr_size = len(arr)
 
# Function call
if(isTriplet(arr, arr_size)):
    print("Yes")
else:
    print("No")
 
# This code is contributed divyeshrabadiya07


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check if any of the
// two numbers are consecutive
// in the given triplet
static bool isConsecutive(int a, int b, int c)
{
    return Math.Abs(a - b) == 1 ||
           Math.Abs(b - c) == 1 ||
           Math.Abs(c - a) == 1;
}
 
// Function to check if there exist a
// pythagorean triplet in the array
static bool isTriplet(int []arr, int n)
{
 
    // Square array elements
    for(int i = 0; i < n; i++)
        arr[i] = arr[i] * arr[i];
 
    // Sort array elements
    Array.Sort(arr);
 
    // Now fix one element one by one
    // and find the other two elements
    for(int i = n - 1; i >= 2; i--)
    {
         
        // To find the other two elements,
        // start two index variables from
        // two corners of the array and move
        // them toward each other
        int l = 0;
        int r = i - 1;
 
        while (l < r)
        {
             
            // A triplet found
            if (arr[l] + arr[r] == arr[i] &&
                isConsective((int)Math.Sqrt(arr[l]),
                             (int)Math.Sqrt(arr[r]),
                             (int)Math.Sqrt(arr[i])))
            {
                return true;
            }
 
            // Else either move 'l' or 'r'
            if(arr[l] + arr[r] < arr[i])
                l++;
            else
                r--;
        }
    }
 
    // If we reach here,
    // then no triplet found
    return false;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given array []arr
    int []arr = { 3, 1, 4, 6, 5 };
    int arr_size = arr.Length;
 
    // Function call
    if(isTriplet(arr, arr_size))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// JavaScript program for the above approach
 
// Function to check if any of the
// two numbers are consecutive
// in the given triplet
function isConsecutive( a, b, c){
    return Math.abs(a - b) == 1
           || Math.abs(b - c) == 1
           || Math.abs(c - a) == 1;
}
 
// Function to check if there exist a
// pythagorean triplet in the array
function isTriplet( arr, n){
    // Square array elements
    for (let i = 0; i < n; i++)
        arr[i] = arr[i] * arr[i];
 
    // Sort array elements
    arr.sort(function(a, b){return a - b});
 
    // Now fix one element one by one
    // and find the other two elements
    for (let i = n - 1; i >= 2; i--) {
 
        // To find the other two elements,
        // start two index variables from
        // two corners of the array and move
        // them toward each other
        let l = 0;
        let r = i - 1;
 
        while (l < r) {
 
            // A triplet found
            if (arr[l] + arr[r] == arr[i]
                && isConsecutive(Math.sqrt(arr[l]),
                                Math.sqrt(arr[r]),
                                Math.sqrt(arr[i]))) {
 
                return true;
            }
 
            // Else either move 'l' or 'r'
            (arr[l] + arr[r] < arr[i])
                ? l++
                : r--;
        }
    }
 
    // If we reach here,
    // then no triplet found
    return false;
}
 
// Driver Code
// Given array arr[]
let arr = [ 3, 1, 4, 6, 5 ];
let arr_size = arr.length;
 
// Function Call
isTriplet(arr, arr_size)
        ?document.write( "Yes")
        : document.write( "No");
</script>


Output: 

Yes

 

Time Complexity: O(N2) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments