Friday, January 10, 2025
Google search engine
HomeData Modelling & AIC++ Program To Subtract Two Numbers Represented As Linked Lists

C++ Program To Subtract Two Numbers Represented As Linked Lists

Given two linked lists that represent two large positive numbers. Subtract the smaller number from the larger one and return the difference as a linked list. Note that the input lists may be in any order, but we always need to subtract smaller from the larger ones.
It may be assumed that there are no extra leading zeros in input lists.
Examples:

Input: l1 = 1 -> 0 -> 0 -> NULL,  l2 = 1 -> NULL
Output: 0->9->9->NULL
Explanation: Number represented as 
lists are 100 and 1, so 100 - 1 is 099

Input: l1 = 7-> 8 -> 6 -> NULL,  l2 = 7 -> 8 -> 9 NULL
Output: 3->NULL
Explanation: Number represented as 
lists are 786 and  789, so 789 - 786 is 3, 
as the smaller value is subtracted from 
the larger one.

Approach: Following are the steps.

  1. Calculate sizes of given two linked lists.
  2. If sizes are not the same, then append zeros in the smaller linked list.
  3. If the size is the same, then follow the below steps:
    1. Find the smaller valued linked list.
    2. One by one subtract nodes of the smaller-sized linked list from the larger size. Keep track of borrow while subtracting.

Following is the implementation of the above approach.

C++




// C++ program to subtract smaller valued 
// list from larger valued list and return 
// result as a list.
#include <bits/stdc++.h>
using namespace std;
  
// A linked List Node
struct Node 
{
    int data;
    struct Node* next;
};
  
// A utility which creates 
// Node.
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->next = NULL;
    return temp;
}
  
/* A utility function to get length
   of linked list */
int getLength(Node* Node)
{
    int size = 0;
    while (Node != NULL) 
    {
        Node = Node->next;
        size++;
    }
    return size;
}
  
/* A Utility that padds zeros in 
   front of the Node, with the 
   given diff */
Node* paddZeros(Node* sNode, 
                int diff)
{
    if (sNode == NULL)
        return NULL;
  
    Node* zHead = newNode(0);
    diff--;
    Node* temp = zHead;
    while (diff--) 
    {
        temp->next = newNode(0);
        temp = temp->next;
    }
    temp->next = sNode;
    return zHead;
}
  
/* Subtract LinkedList Helper is a 
   recursive function, move till the 
   last Node,  and subtract the digits 
   and create the Node and return the 
   Node. If d1 < d2, we borrow the number 
   from previous digit. */
Node* subtractLinkedListHelper(Node* l1, 
                               Node* l2, 
                               bool& borrow)
{
    if (l1 == NULL && 
        l2 == NULL && borrow == 0)
        return NULL;
  
    Node* previous = subtractLinkedListHelper(
                     l1 ? l1->next : NULL,
                     l2 ? l2->next : NULL, borrow);
  
    int d1 = l1->data;
    int d2 = l2->data;
    int sub = 0;
  
    /* If you have given the value value 
       to next digit then reduce the d1 by 1 */
    if (borrow) 
    {
        d1--;
        borrow = false;
    }
  
    /* If d1 < d2, then borrow the number 
       from previous digit. Add 10 to d1 
       and set borrow = true; */
    if (d1 < d2) 
    {
        borrow = true;
        d1 = d1 + 10;
    }
  
    // Subtract the digits 
    sub = d1 - d2;
  
    // Create a Node with sub value 
    Node* current = newNode(sub);
  
    // Set the Next pointer as Previous 
    current->next = previous;
  
    return current;
}
  
/* This API subtracts two linked lists 
   and returns the linked list which 
   shall  have the subtracted result. */
Node* subtractLinkedList(Node* l1, 
                         Node* l2)
{
    // Base Case.
    if (l1 == NULL && l2 == NULL)
        return NULL;
  
    // In either of the case, get the 
    // lengths of both Linked list.
    int len1 = getLength(l1);
    int len2 = getLength(l2);
  
    Node *lNode = NULL, *sNode = NULL;
  
    Node* temp1 = l1;
    Node* temp2 = l2;
  
    // If lengths differ, calculate the 
    // smaller Node and padd zeros for 
    // smaller Node and ensure both larger 
    // Node and smaller Node has equal length.
    if (len1 != len2) 
    {
        lNode = len1 > len2 ? l1 : l2;
        sNode = len1 > len2 ? l2 : l1;
        sNode = paddZeros(sNode, 
                          abs(len1 - len2));
    }
  
    else
    {
        // If both list lengths are equal, 
        // then calculate the larger and 
        // smaller list. If 5-6-7 & 5-6-8 
        // are linked list, then walk through 
        // linked list at last Node as 7 < 8, 
        // larger Node is 5-6-8 and smaller 
        // Node is 5-6-7.
        while (l1 && l2) 
        {
            if (l1->data != l2->data) 
            {
                lNode = (l1->data > l2->data ? 
                         temp1 : temp2);
                sNode = (l1->data > l2->data ? 
                         temp2 : temp1);
                break;
            }
            l1 = l1->next;
            l2 = l2->next;
        }
    }
      // If both lNode and sNode still 
      // have NULL value, then this means 
      // that the  value of both of the 
      // given linked lists is the same 
      // and hence we can directly return 
      // a node with value 0.
    if(lNode==NULL&&sNode==NULL)
    {
      return newNode(0);
    }
  
    // After calculating larger and smaller 
    // Node, call subtractLinkedListHelper 
    // which returns the subtracted linked list.
    bool borrow = false;
    return subtractLinkedListHelper(lNode, 
                                    sNode, borrow);
}
  
/* A utility function to print 
   linked list */
void printList(struct Node* Node)
{
    while (Node != NULL) 
    {
        printf("%d ", Node->data);
        Node = Node->next;
    }
    printf("");
}
  
// Driver code
int main()
{
    Node* head1 = newNode(1);
    head1->next = newNode(0);
    head1->next->next = newNode(0);
    Node* head2 = newNode(1);
    Node* result = subtractLinkedList(head1, 
                                      head2);
    printList(result);
    return 0;
}


Output:

0 9 9 

Complexity Analysis:

  • Time complexity: O(n). 
    As no nested traversal of linked list is needed.
  • Auxiliary Space: O(n). 
    If recursive stack space is taken into consideration O(n) space is needed.

Please refer complete article on Subtract Two Numbers represented as Linked Lists for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments