Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMaximize sum of subsets from two arrays having no consecutive values

Maximize sum of subsets from two arrays having no consecutive values

Given two arrays arr1[] and arr2[] of equal length, the task is to find the maximum sum of any subset possible by selecting elements from both the arrays such that no two elements in the subset should be consecutive.

Examples:

Input: arr1[] = {-1, -2, 4, -4, 5}, arr2[] = {-1, -2, -3, 4, 10}
Output: 14
Explanation:
Required subset {4, 10}. Therefore, sum = 4 + 10 = 14.

Input: arr1[] = {2, 5, 4, 2000}, arr2[] = {-2000, 100, 23, 40}
Output: 2100

Naive Approach: The simplest approach is to generate all possible subsets from both the given arrays such that no two adjacent elements are consecutive and calculate the sum of each subset. Finally, print the maximum sum possible. 
Time Complexity: O(N*2N)
Auxiliary Space: O(2N)

Efficient Approach: The above approach can be optimized using Dynamic Programming. Follow the steps below to solve the problem:

  • Initialize an auxiliary array dp[] of size N.
  • Here, dp[i] stores the maximum possible sum of a subset from both the arrays such that no two elements are consecutive.
  • Declare a function maximumSubsetSum():
    • Base Cases:
      • dp[1] = max(arr1[1], arr2[1]).
      • dp[2] = max(max(arr1[1], arr2[1]), max(arr1[2], arr2[2])).
    • For all other cases, following three conditions arise:
      • dp[i] = max(arr1[i], arr2[i], arr1[i] + dp[i – 2], arr2[i] + dp[i – 2], dp[i – 1]).
  • Finally, print dp[N] as the required answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate maximum subset sum
void maximumSubsetSum(int arr1[],int arr2[], int length)
{
 
    // Initialize array to store dp states
    int dp[length+1];
 
    // Base Cases
    if (length == 1)
    {
        cout << (max(arr1[0], arr2[0]));
        return;
    }
 
    if (length == 2)
    {
        cout << (max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0])));
        return;
    }
    else
    {
 
        // Pre initializing for dp[0] & dp[1]
        dp[0] = max(arr1[0], arr2[0]);
        dp[1] = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]));
 
        int index = 2;
        while (index < length)
        {
 
            // Calculating dp[index] based on
            // above formula
            dp[index] = max(max(arr1[index], arr2[index]),
                max(max(arr1[index] + dp[index - 2],
                        arr2[index] + dp[index - 2]),
                    dp[index - 1]));
            ++index;
        }
 
        // Print maximum subset sum
        cout<<(dp[length - 1]);
    }
}
 
// Driver Code
int main()
{
   
  // Given arrays
  int arr1[] = { -1, -2, 4, -4, 5 };
  int arr2[] = { -1, -2, -3, 4, 10 };
 
  // Length of the array
  int length = 5;
  maximumSubsetSum(arr1, arr2, length);
  return 0;
}
 
// This code is contributed by mohit kumar 29


Java




// Java program for the above approach
 
import java.io.*;
import java.util.*;
class GFG {
 
    // Function to calculate maximum subset sum
    static void maximumSubsetSum(int arr1[],
                                 int arr2[],
                                 int length)
    {
 
        // Initialize array to store dp states
        int dp[] = new int[length + 1];
 
        // Base Cases
        if (length == 1) {
            System.out.print(
                Math.max(arr1[0], arr2[0]));
            return;
        }
 
        if (length == 2) {
            System.out.print(
                Math.max(
                    Math.max(arr1[1], arr2[1]),
                    Math.max(arr1[0], arr2[0])));
            return;
        }
        else {
 
            // Pre initializing for dp[0] & dp[1]
            dp[0] = Math.max(arr1[0], arr2[0]);
            dp[1] = Math.max(
                Math.max(arr1[1], arr2[1]),
                Math.max(arr1[0], arr2[0]));
 
            int index = 2;
            while (index < length) {
 
                // Calculating dp[index] based on
                // above formula
                dp[index] = Math.max(
                    Math.max(arr1[index], arr2[index]),
                    Math.max(
                        Math.max(
                            arr1[index] + dp[index - 2],
                            arr2[index] + dp[index - 2]),
                        dp[index - 1]));
                ++index;
            }
 
            // Print maximum subset sum
            System.out.print(dp[length - 1]);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Given arrays
        int arr1[] = { -1, -2, 4, -4, 5 };
        int arr2[] = { -1, -2, -3, 4, 10 };
 
        // Length of the array
        int length = arr1.length;
 
        maximumSubsetSum(arr1, arr2, length);
    }
}


Python3




# Python program of the above approach
 
# Function to calculate maximum subset sum
def maximumSubsetSum(arr1, arr2, length) :
 
    # Initialize array to store dp states
    dp = [0] * (length+1)
 
    # Base Cases
    if (length == 1) :     
        print(max(arr1[0], arr2[0]))
        return
    if (length == 2) :
        print(max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0])))
        return 
    else  :
 
        # Pre initializing for dp[0] & dp[1]
        dp[0] = max(arr1[0], arr2[0])
        dp[1] = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]))
        index = 2
        while (index < length) :
 
            # Calculating dp[index] based on
            # above formula
            dp[index] = max(max(arr1[index], arr2[index]),
                max(max(arr1[index] + dp[index - 2],
                        arr2[index] + dp[index - 2]),
                    dp[index - 1]))
            index += 1
         
        # Print maximum subset sum
        print(dp[length - 1])
     
# Driver Code
 
# Given arrays
arr1 = [ -1, -2, 4, -4, 5 ]
arr2 = [ -1, -2, -3, 4, 10 ]
 
# Length of the array
length = 5
maximumSubsetSum(arr1, arr2, length)
 
# This code is contributed by susmitakundugoaldanga.


C#




// C# program for the above approach
using System;
class GFG
{
 
  // Function to calculate maximum subset sum
  static void maximumSubsetSum(int[] arr1,
                               int[] arr2,
                               int length)
  {
 
    // Initialize array to store dp states
    int[] dp = new int[length + 1];
 
    // Base Cases
    if (length == 1) {
      Console.WriteLine(Math.Max(arr1[0], arr2[0]));
      return;
    }
 
    if (length == 2)
    {
      Console.WriteLine(Math.Max(
        Math.Max(arr1[1], arr2[1]),
        Math.Max(arr1[0], arr2[0])));
      return;
    }
    else
    {
 
      // Pre initializing for dp[0] & dp[1]
      dp[0] = Math.Max(arr1[0], arr2[0]);
      dp[1] = Math.Max(Math.Max(arr1[1], arr2[1]),
                       Math.Max(arr1[0], arr2[0]));
 
      int index = 2;
      while (index < length) {
 
        // Calculating dp[index] based on
        // above formula
        dp[index] = Math.Max(Math.Max(arr1[index], arr2[index]),
                             Math.Max(Math.Max(arr1[index] +
                                               dp[index - 2],
                                               arr2[index] +
                                               dp[index - 2]),
                                      dp[index - 1]));
        ++index;
      }
 
      // Print maximum subset sum
      Console.WriteLine(dp[length - 1]);
    }
  }
 
  // Driver Code
  static public void Main()
  {
 
    // Given arrays
    int[] arr1 = { -1, -2, 4, -4, 5 };
    int[] arr2 = { -1, -2, -3, 4, 10 };
 
    // Length of the array
    int length = arr1.Length;
 
    maximumSubsetSum(arr1, arr2, length);
  }
}
 
// This code is contributed by code_hunt.


Javascript




<script>
 
// javascript program of the above approach
 
    // Function to calculate maximum subset sum
    function maximumSubsetSum(arr1, arr2,length)
    {
  
        // Initialize array to store dp states
        let dp = new Array(length).fill(0);;
  
        // Base Cases
        if (length == 1) {
            document.write(
                Math.max(arr1[0], arr2[0]));
            return;
        }
  
        if (length == 2) {
            document.write(
                Math.max(
                    Math.max(arr1[1], arr2[1]),
                    Math.max(arr1[0], arr2[0])));
            return;
        }
        else {
  
            // Pre initializing for dp[0] & dp[1]
            dp[0] = Math.max(arr1[0], arr2[0]);
            dp[1] = Math.max(
                Math.max(arr1[1], arr2[1]),
                Math.max(arr1[0], arr2[0]));
  
            let index = 2;
            while (index < length) {
  
                // Calculating dp[index] based on
                // above formula
                dp[index] = Math.max(
                    Math.max(arr1[index], arr2[index]),
                    Math.max(
                        Math.max(
                            arr1[index] + dp[index - 2],
                            arr2[index] + dp[index - 2]),
                        dp[index - 1]));
                ++index;
            }
  
            // Print maximum subset sum
            document.write(dp[length - 1]);
        }
    }
 
    // Driver Code
     
    // Given arrays
        let arr1 = [ -1, -2, 4, -4, 5 ];
        let arr2 = [ -1, -2, -3, 4, 10 ];
  
        // Length of the array
        let length = arr1.length;
  
        maximumSubsetSum(arr1, arr2, length);
 
</script>


Output

14








Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient approach : Space optimization O(1)

In previous approach we the current value dp[i] is only depend upon the previous 2 values i.e. dp[i-1] and dp[i-2]. So to optimize the space we can keep track of previous and current values by the help of three variables prev1, prev2 and curr which will reduce the space complexity from O(x) to O(1).  

Implementation:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate maximum subset sum
void maximumSubsetSum(int arr1[],int arr2[], int length)
{
 
    // Initialize variables to store dp states
    int dp0 = max(arr1[0], arr2[0]);
    int dp1 = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]));
    int dpi = dp1, dpim2 = dp0;
 
    // Base Cases
    if (length == 1)
    {
        cout << dp0;
        return;
    }
 
    if (length == 2)
    {
        cout << dp1;
        return;
    }
    else
    {
        int index = 2;
        while (index < length)
        {
 
            // Calculating dp[index] based on above formula
            dpi = max(max(arr1[index], arr2[index]),
                max(max(arr1[index] + dpim2,
                        arr2[index] + dpim2),
                    dp1));
            dpim2 = dp1;
            dp1 = dpi;
            ++index;
        }
 
        // Print maximum subset sum
        cout<<(dpi);
    }
}
 
// Driver Code
int main()
{
 
    // Given arrays
    int arr1[] = { -1, -2, 4, -4, 5 };
    int arr2[] = { -1, -2, -3, 4, 10 };
 
    // Length of the array
    int length = 5;
    maximumSubsetSum(arr1, arr2, length);
    return 0;
}


Java




public class GFG {
    // Function to calculate maximum subset sum
    static void maximumSubsetSum(int[] arr1, int[] arr2, int length) {
 
        // Initialize variables to store dp states
        int dp0 = Math.max(arr1[0], arr2[0]);
        int dp1 = Math.max(Math.max(arr1[1], arr2[1]), Math.max(arr1[0], arr2[0]));
        int dpi = dp1, dpim2 = dp0;
 
        // Base Cases
        if (length == 1) {
            System.out.println(dp0);
            return;
        }
 
        if (length == 2) {
            System.out.println(dp1);
            return;
        } else {
            int index = 2;
            while (index < length) {
 
                // Calculating dp[index] based on the formula
                dpi = Math.max(Math.max(arr1[index], arr2[index]),
                        Math.max(Math.max(arr1[index] + dpim2,
                                arr2[index] + dpim2),
                                dp1));
                dpim2 = dp1;
                dp1 = dpi;
                ++index;
            }
 
            // Print maximum subset sum
            System.out.println(dpi);
        }
    }
 
    // Driver Code
    public static void main(String[] args) {
 
        // Given arrays
        int[] arr1 = { -1, -2, 4, -4, 5 };
        int[] arr2 = { -1, -2, -3, 4, 10 };
 
        // Length of the array
        int length = 5;
        maximumSubsetSum(arr1, arr2, length);
    }
}


Python3




def maximumSubsetSum(arr1, arr2, length):
    # Initialize variables to store dp states
    dp0 = max(arr1[0], arr2[0])
    dp1 = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]))
    dpi, dpim2 = dp1, dp0
 
    # Base Cases
    if length == 1:
        print(dp0)
        return
 
    if length == 2:
        print(dp1)
        return
    else:
        index = 2
        while index < length:
            # Calculating dpi based on the given formula
            dpi = max(
                max(arr1[index], arr2[index]),
                max(
                    max(arr1[index] + dpim2, arr2[index] + dpim2),
                    dp1
                )
            )
            dpim2 = dp1
            dp1 = dpi
            index += 1
 
        # Print maximum subset sum
        print(dpi)
 
# Driver Code
if __name__ == "__main__":
    # Given arrays
    arr1 = [-1, -2, 4, -4, 5]
    arr2 = [-1, -2, -3, 4, 10]
 
    # Length of the array
    length = 5
    maximumSubsetSum(arr1, arr2, length)


C#




using System;
 
class Program
{
    static void MaximumSubsetSum(int[] arr1, int[] arr2, int length)
    {  
        // Initialize variables to store dp states
        int dp0 = Math.Max(arr1[0], arr2[0]);
        int dp1 = Math.Max(Math.Max(arr1[1], arr2[1]), Math.Max(arr1[0], arr2[0]));
        int dpi = dp1, dpim2 = dp0;
         
        // Base Cases
        if (length == 1)
        {
            Console.Write(dp0);
            return;
        }
 
        if (length == 2)
        {
            Console.Write(dp1);
            return;
        }
        else
        {
            int index = 2;
            while (index < length)
            {  
                 // Calculating dp[index] based on above formula
                dpi = Math.Max(Math.Max(arr1[index], arr2[index]),
                    Math.Max(Math.Max(arr1[index] + dpim2,
                                      arr2[index] + dpim2),
                             dp1));
                dpim2 = dp1;
                dp1 = dpi;
                ++index;
            }
 
            Console.Write(dpi);
        }
    }
 
    static void Main(string[] args)
    {
        int[] arr1 = { -1, -2, 4, -4, 5 };
        int[] arr2 = { -1, -2, -3, 4, 10 };
        int length = 5;
        MaximumSubsetSum(arr1, arr2, length);
    }
}


Javascript




function maximumSubsetSum(arr1, arr2, length) {
    // Initialize variables to store dp states
    let dp0 = Math.max(arr1[0], arr2[0]);
    let dp1 = Math.max(Math.max(arr1[1], arr2[1]), Math.max(arr1[0], arr2[0]));
    let dpi = dp1;
    let dpim2 = dp0;
 
    // Base Cases
    if (length === 1) {
        console.log(dp0); // Print the maximum subset sum
        return;
    }
 
    if (length === 2) {
        console.log(dp1); // Print the maximum subset sum
        return;
    } else {
        let index = 2;
        while (index < length) {
            // Calculate dpi based on the maximum of different cases
            dpi = Math.max(
                Math.max(arr1[index], arr2[index]),
                Math.max(
                    Math.max(arr1[index] + dpim2, arr2[index] + dpim2),
                    dp1
                )
            );
            dpim2 = dp1;
            dp1 = dpi;
            index++;
        }
 
        console.log(dpi); // Print the maximum subset sum
    }
}
 
const arr1 = [-1, -2, 4, -4, 5];
const arr2 = [-1, -2, -3, 4, 10];
const length = 5;
 
maximumSubsetSum(arr1, arr2, length);


Output

14








Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments