Monday, April 21, 2025
Google search engine
HomeData Modelling & AITrailing number of 0s in product of two factorials

Trailing number of 0s in product of two factorials

Given two integer N or M find the number of zero’s trailing in product of factorials (N!*M!)? 
Examples: 
 

Input : N = 4, M = 5 
Output :  1
Explanation : 4! = 24, 5! = 120
Product has only 1 trailing 0.

Input : N = 127!, M = 57!
Output : 44

 

As discussed in number of zeros in N! can be calculated by recursively dividing N by 5 and adding up the quotients.
 

For example if N = 127, then 
Number of 0 in 127! = 127/5 + 127/25 + 127/125 + 127/625 
= 25 + 5 + 1 + 0 
= 31

Number of 0s in N! = 31. Similarly, for M we can calculate and add both of them. 
So, by above we can conclude that number of zeroes in N!*M! Is equal to sum of number of zeroes in N! and M!.
 

f(N) = floor(N/5) + floor(N/5^2) + … floor(N/5^3) + … 
f(M) = floor(x/5) + floor(M/5^2) + … floor(M/5^3) + …
Then answer is f(N)+f(M)

 

C++




// CPP program for count number of trailing zeros
// in N! * M!
#include <iostream>
using namespace std;
 
// Returns number of zeros in factorial n
int trailingZero(int x)
{
    // dividing x by powers of 5 and update count
    int i = 5, count = 0;
    while (x > i) {
        count = count + x / i;
        i = i * 5;
    }
    return count;
}
 
// Returns count of trailing zeros in M! x N!
int countProductTrailing(int M, int N)
{
   return trailingZero(N) + trailingZero(M);
}
 
// Driver program
int main()
{
    int N = 67, M = 98;
    cout << countProductTrailing(N, M);
    return 0;
}


Java




// Java program for count number
// of trailing zeros in N! * M!
import java.io.*;
 
class GFG {
     
    // Returns number of zeros in factorial n
    static int trailingZero(int x)
    {
        // dividing x by powers
        // of 5 and update count
        int i = 5, count = 0;
         
        while (x > i) {
             
            count = count + x / i;
            i = i * 5;
        }
        return count;
    }
     
    // Returns count of trailing zeros in M! x N!
    static int countProductTrailing(int M, int N)
    {
    return trailingZero(N) + trailingZero(M);
    }
     
    // Driver program
    public static void main(String args[])
    {
        int N = 67, M = 98;
        System.out.println(countProductTrailing(N, M));
    }
}
 
 
/* This code is contributed by Nikita Tiwari.*/


Python3




# Python 3 program for count
# number of trailing zeros
# in N ! * M !
 
# Returns number of zeros in
# factorial n
def trailingZero(x) :
 
    # Dividing x by powers of 5
    # and update count
    i = 5
    count = 0
     
    while (x > i) :
        count = count + x // i
        i = i * 5
     
    return count
     
# Returns count of trailing
# zeros in M ! x N !
def countProductTrailing(M, N) :
    return trailingZero(N) + trailingZero(M)
     
# Driver program
N = 67
M = 98
print(countProductTrailing(N, M))
 
# This code is contributed by Nikita Tiwari.


C#




// Java program for count number
// of trailing zeros in N! * M!
using System;
 
class GFG {
     
    // Returns number of zeros in factorial n
    static int trailingZero(int x)
    {
        // dividing x by powers
        // of 5 and update count
        int i = 5, count = 0;
         
        while (x > i) {
             
            count = count + x / i;
            i = i * 5;
        }
        return count;
    }
     
    // Returns count of trailing zeros in M! x N!
    static int countProductTrailing(int M, int N)
    {
    return trailingZero(N) + trailingZero(M);
    }
     
    // Driver program
    public static void Main()
    {
        int N = 67, M = 98;
        Console.WriteLine(countProductTrailing(N, M));
    }
}
 
 
/* This code is contributed by vt_m.*/


PHP




<?php
// PHP program for count number
// of trailing zeros in N! * M!
 
// Returns number of
// zeros in factorial n
function trailingZero($x)
{
     
    // dividing x by powers of
    // 5 and update count
    $i = 5; $count = 0;
    while ($x > $i)
    {
        $count = $count + (int)($x / $i);
        $i = $i * 5;
    }
    return $count;
}
 
// Returns count of trailing
// zeros in M! x N!
function countProductTrailing($M, $N)
{
    return trailingZero($N) + trailingZero($M);
}
 
// Driver Code
$N = 67; $M = 98;
echo(countProductTrailing($N, $M));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
// Javascript program for count number
// of trailing zeros in N! * M!
 
// Returns number of
// zeros in factorial n
function trailingZero(x)
{
     
    // dividing x by powers of
    // 5 and update count
    let i = 5;
    let count = 0;
    while (x > i)
    {
        count = count + parseInt(x / i);
        i = i * 5;
    }
    return count;
}
 
// Returns count of trailing
// zeros in M! x N!
function countProductTrailing(M, N)
{
    return trailingZero(N) + trailingZero(M);
}
 
// Driver Code
let N = 67;
let M = 98;
document.write(countProductTrailing(N, M));
 
// This code is contributed by _saurabh_jaiswal.
</script>


Output: 
 

 37

Time Complexity: O(log5m+log5n)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments