Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AILargest N digit number divisible by given three numbers

Largest N digit number divisible by given three numbers

Given four integers x, y, z, and n, the task is to find the largest n digit number which is divisible by x, y, and z

Examples:

Input: x = 2, y = 3, z = 5, n = 4 
Output: 9990 
9990 is the largest 4-digit number which is divisible by 2, 3 and 5.
Input: x = 3, y = 23, z = 6, n = 2 
Output: Not possible 

Approach:  

  • Find the largest n digit number i.e. pow(10, n) – 1 and store it in a variable largestN.
  • Find LCM of the given three numbers x, y and z say LCM.
  • Calculate the remainder when largestN is divided by LCM i.e. largestN % LCM and store it in a variable remainder.
  • Subtract remainder from largestN. If the result is still an n digit number then print the result.
  • Else print Not possible.

Below is the implementation of the above approach:
 

C++




// C++ program to find largest n digit number
// which is divisible by x, y and z.
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the LCM of three numbers
int LCM(int x, int y, int z)
{
    int ans = ((x * y) / (__gcd(x, y)));
    return ((z * ans) / (__gcd(ans, z)));
}
 
// Function to return the largest n-digit
// number which is divisible by x, y and z
int findDivisible(int n, int x, int y, int z)
{
 
    // find the LCM
    int lcm = LCM(x, y, z);
 
    // find largest n-digit number
    int largestNDigitNum = pow(10, n) - 1;
 
    int remainder = largestNDigitNum % lcm;
 
    // If largest number is the answer
    if (remainder == 0)
        return largestNDigitNum ;
 
    // find closest smaller number
    // divisible by LCM
    largestNDigitNum -= remainder;
 
    // if result is an n-digit number
    if (largestNDigitNum >= pow(10, n - 1))
        return largestNDigitNum;
    else
        return 0;
}
 
// Driver code
int main()
{
    int n = 2, x = 3, y = 4, z = 6;
    int res = findDivisible(n, x, y, z);
 
    // if the number is found
    if (res != 0)
        cout << res;
    else
        cout << "Not possible";
 
    return 0;
}


Java




// Java program to find largest n digit number
// which is divisible by x, y and z.
import java.math.*;
class GFG {
     
// Recursive function to return gcd of a and b
    static int gcd(int a, int b)
    {
        // Everything divides 0 
        if (a == 0)
          return b;
        if (b == 0)
          return a;
        
        // base case
        if (a == b)
            return a;
        
        // a is greater
        if (a > b)
            return gcd(a-b, b);
        return gcd(a, b-a);
    }
     
// Function to return the LCM of three numbers
static int LCM(int x, int y, int z)
{
    int ans = ((x * y) / (gcd(x, y)));
    return ((z * ans) / (gcd(ans, z)));
}
 
// Function to return the largest n-digit
// number which is divisible by x, y and z
static int findDivisible(int n, int x, int y, int z)
{
 
    // find the LCM
    int lcm = LCM(x, y, z);
 
    // find largest n-digit number
    int largestNDigitNum = (int)Math.pow(10, n) - 1;
 
    int remainder = largestNDigitNum % lcm;
 
    // If largest number is the answer
    if (remainder == 0)
        return largestNDigitNum ;
 
    // find closest smaller number
    // divisible by LCM
    largestNDigitNum -= remainder;
 
    // if result is an n-digit number
    if (largestNDigitNum >= (int)Math.pow(10, n - 1))
        return largestNDigitNum;
    else
        return 0;
}
 
// Driver code
public static void main(String args[])
{
    int n = 2, x = 3, y = 4, z = 6;
    int res = findDivisible(n, x, y, z);
 
    // if the number is found
    if (res != 0)
        System.out.println(res);
    else
        System.out.println("Not possible");
 
}
}


Python3




# Python3 program to find largest n digit
# number which is divisible by x, y and z.
 
# Recursive function to return
# gcd of a and b
def gcd(a, b):
 
    # Everything divides 0
    if (a == 0):
        return b;
    if (b == 0):
        return a;
     
    # base case
    if (a == b):
        return a;
     
    # a is greater
    if (a > b):
        return gcd(a - b, b);
    return gcd(a, b - a);
 
# Function to return the LCM
# of three numbers
def LCM(x, y, z):
    ans = ((x * y) / (gcd(x, y)));
    return ((z * ans) / (gcd(ans, z)));
 
# Function to return the largest n-digit
# number which is divisible by x, y and z
def findDivisible(n, x, y, z):
     
    # find the LCM
    lcm = LCM(x, y, z);
     
    # find largest n-digit number
    largestNDigitNum = int(pow(10, n)) - 1;
     
    remainder = largestNDigitNum % lcm;
     
    # If largest number is the answer
    if (remainder == 0):
        return largestNDigitNum ;
     
    # find closest smaller number
    # divisible by LCM
    largestNDigitNum -= remainder;
     
    # if result is an n-digit number
    if (largestNDigitNum >= int(pow(10, n - 1))):
        return largestNDigitNum;
    else:
        return 0;
 
# Driver code
n = 2; x = 3;
y = 4; z = 6;
res = int(findDivisible(n, x, y, z));
 
# if the number is found
if (res != 0):
    print(res);
else:
    print("Not possible");
 
# This code is contributed
# by mits


C#




// C# program to find largest n
// digit number which is divisible
// by x, y and z.
using System;
 
class GFG
{
// Recursive function to return
// gcd of a and b
static int gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return gcd(a - b, b);
    return gcd(a, b - a);
}
 
// Function to return the
// LCM of three numbers
static int LCM(int x, int y, int z)
{
    int ans = ((x * y) / (gcd(x, y)));
    return ((z * ans) / (gcd(ans, z)));
}
 
// Function to return the largest
// n-digit number which is divisible
// by x, y and z
static int findDivisible(int n, int x,
                         int y, int z)
{
 
    // find the LCM
    int lcm = LCM(x, y, z);
 
    // find largest n-digit number
    int largestNDigitNum = (int)Math.Pow(10, n) - 1;
 
    int remainder = largestNDigitNum % lcm;
 
    // If largest number is the answer
    if (remainder == 0)
        return largestNDigitNum ;
 
    // find closest smaller number
    // divisible by LCM
    largestNDigitNum -= remainder;
 
    // if result is an n-digit number
    if (largestNDigitNum >= (int)Math.Pow(10, n - 1))
        return largestNDigitNum;
    else
        return 0;
}
 
// Driver code
static void Main()
{
    int n = 2, x = 3, y = 4, z = 6;
    int res = findDivisible(n, x, y, z);
 
    // if the number is found
    if (res != 0)
        Console.WriteLine(res);
    else
        Console.WriteLine("Not possible");
}
}
 
// This code is contributed by ANKITRAI1


PHP




<?php
// PHP program to find largest n digit number
// which is divisible by x, y and z.
 
// Recursive function to return gcd of a and b
function gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0)
        return $b;
    if ($b == 0)
        return $a;
     
    // base case
    if ($a == $b)
        return $a;
     
    // a is greater
    if ($a > $b)
        return gcd($a - $b, $b);
    return gcd($a, $b - $a);
}
 
// Function to return the LCM
// of three numbers
function LCM($x, $y, $z)
{
$ans = (($x * $y) / (gcd($x, $y)));
return (($z * $ans) / (gcd($ans, $z)));
}
 
// Function to return the largest n-digit
// number which is divisible by x, y and z
function findDivisible($n, $x, $y, $z)
{
     
    // find the LCM
    $lcm = LCM($x, $y, $z);
     
    // find largest n-digit number
    $largestNDigitNum = (int)pow(10, $n) - 1;
     
    $remainder = $largestNDigitNum % $lcm;
     
    // If largest number is the answer
    if ($remainder == 0)
        return $largestNDigitNum ;
     
    // find closest smaller number
    // divisible by LCM
    $largestNDigitNum -= $remainder;
     
    // if result is an n-digit number
    if ($largestNDigitNum >= (int)pow(10, $n - 1))
        return $largestNDigitNum;
    else
        return 0;
}
 
// Driver code
$n = 2; $x = 3; $y = 4; $z = 6;
$res = findDivisible($n, $x, $y, $z);
 
// if the number is found
if ($res != 0)
    echo $res;
else
    echo "Not possible";
 
// This code is contributed
// by Akanksha Rai


Javascript




<script>
 
// Javascript program to find largest n
// digit number which is divisible
// by x, y and z.
 
// Recursive function to return
// gcd of a and b
function gcd(a, b)
{
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return gcd(a - b, b);
    return gcd(a, b - a);
}
 
// Function to return the
// LCM of three numbers
function LCM(x, y, z)
{
    var ans = parseInt((x * y) / (gcd(x, y)));
    return parseInt((z * ans) / (gcd(ans, z)));
}
 
// Function to return the largest
// n-digit number which is divisible
// by x, y and z
function findDivisible(n, x, y, z)
{
 
    // find the LCM
    var lcm = LCM(x, y, z);
 
    // find largest n-digit number
    var largestNDigitNum = Math.pow(10, n) - 1;
 
    var remainder = largestNDigitNum % lcm;
 
    // If largest number is the answer
    if (remainder == 0)
        return largestNDigitNum ;
 
    // find closest smaller number
    // divisible by LCM
    largestNDigitNum -= remainder;
 
    // if result is an n-digit number
    if (largestNDigitNum >= Math.pow(10, n - 1))
        return largestNDigitNum;
    else
        return 0;
}
 
// Driver code
var n = 2, x = 3, y = 4, z = 6;
var res = findDivisible(n, x, y, z);
// if the number is found
if (res != 0)
    document.write(res);
else
    document.write("Not possible");
 
</script>


Output: 

96

 

Time Complexity: O(log(min(x, y,z ))) + O(log(n)) as we are doing lcm of x,y,z we need log(min(x,y,z)) time complexity for that + log(n) for doing pow(10,n-1) so overall time complexity will be O(log(min(x, y,z ))) + O(log(n))

Auxiliary Space: O(log(min(x, y, z))) + O(log(n)) as we are doing lcm of x,y,z this lcm will be done in recursively manner so recursion need extra O(log(min(x, y, z))) auxiliary stack space, and addition for doing pow(10,n-1) which is also in recursive manner which also need log(n) extra auxiliary stack space

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments