Monday, November 18, 2024
Google search engine
HomeData Modelling & AIPair of integers having least GCD among all given pairs having GCD...

Pair of integers having least GCD among all given pairs having GCD exceeding K

Given an array arr[][] containing pairs of integers in increasing order of GCDs, and an integer K, the task is to find a pair of integers whose GCD is at least K and is also the least among all possible GCDs exceeding K. If there exists no such pair, then print -1.
Examples:

Input: arr[][] = [(3, 6), (15, 30), (25, 75), (30, 120)], K = 16 
Output: (25, 75) 
Explanation: 
The GCD of (25, 75) is 25 which is greater than 16 and least among all possible GCD.

Input: arr[] = [(2, 5), (12, 36), (13, 26)], K = 14 
Output: -1

Naive Approach: The simplest approach is to iterate over all the pairs of the given array and check for each pair, if its GCD exceeds K. From all such pairs, print the pair having the least GCD.

Time Complexity: O(N * log(N)) 
Auxiliary Space: O(1)

Efficient Approach: The idea is to observe that the array elements are sorted in increasing order of their GCD values of the pair so use Binary Search. Follow the steps below to solve the problem:

  • Calculate the mid-value of the search space and check if GCD of arr[mid] > K.
  • If it exceeds K, then update the answer and reduce the upper value of the search space to mid – 1.
  • If the GCD of arr[mid] ? K, then increase the lower value of the search space to mid + 1.
  • Continue the above process until the lower value is less than or equal to the upper value.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate
// the GCD of two numbers
int GCD(int a, int b)
{
    if (b == 0) {
        return a;
    }
    return GCD(b, a % b);
}
 
// Function to print the pair
// having a gcd value just greater
// than the given integer
void GcdPair(vector<pair<int, int> > arr, int k)
{
    // Initialize variables
    int lo = 0, hi = arr.size() - 1, mid;
    pair<int, int> ans;
    ans = make_pair(-1, 0);
 
    // Iterate until low less
    // than equal to high
    while (lo <= hi) {
 
        // Calculate mid
        mid = lo + (hi - lo) / 2;
        if (GCD(arr[mid].first,
                arr[mid].second)
            > k) {
            ans = arr[mid];
            hi = mid - 1;
        }
        // Reducing the search space
        else
            lo = mid + 1;
    }
 
    // Print the answer
    if (ans.first == -1)
        cout << "-1";
    else
        cout << "( " << ans.first << ", "
             << ans.second << " )";
 
    return;
}
 
// Driver Code
int main()
{
    // Given array and K
    vector<pair<int, int> > arr = { { 3, 6 },
                                    { 15, 30 },
                                    { 25, 75 },
                                    { 30, 120 } };
    int K = 16;
 
    // Function Call
    GcdPair(arr, K);
 
    return 0;
}


Java




// Java program for
// the above approach
import java.util.*;
class GFG{
 
// Function to calculate
// the GCD of two numbers
static int GCD(int a, int b)
{
  if (b == 0)
  {
    return a;
  }
  return GCD(b, a % b);
}
 
// Function to print the pair
// having a gcd value just
// greater than the given integer
static void GcdPair(int [][]arr,
                    int k)
{
  // Initialize variables
  int lo = 0, hi = arr.length - 1, mid;
  int []ans = {-1, 0};
 
  // Iterate until low less
  // than equal to high
  while (lo <= hi)
  {
    // Calculate mid
    mid = lo + (hi - lo) / 2;
    if (GCD(arr[mid][0],
            arr[mid][1]) > k)
    {
      ans = arr[mid];
      hi = mid - 1;
    }
     
    // Reducing the search space
    else
      lo = mid + 1;
  }
 
  // Print the answer
  if (ans[0] == -1)
    System.out.print("-1");
  else
    System.out.print("( " + ans[0] +
                     ", " + ans[1] + " )");
  return;
}
 
// Driver Code
public static void main(String[] args)
{
  // Given array and K
  int [][]arr = {{3, 6},
                 {15, 30},
                 {25, 75},
                 {30, 120}};
  int K = 16;
 
  // Function Call
  GcdPair(arr, K);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program for the above approach
 
# Function to calculate
# the GCD of two numbers
def GCD(a, b):
     
    if (b == 0):
        return a
         
    return GCD(b, a % b)
 
# Function to print the pair
# having a gcd value just greater
# than the given integer
def GcdPair(arr, k):
     
    # Initialize variables
    lo = 0
    hi = len(arr) - 1
    ans = [-1, 0]
 
    # Iterate until low less
    # than equal to high
    while (lo <= hi):
 
        # Calculate mid
        mid = lo + (hi - lo) // 2
        if (GCD(arr[mid][0], arr[mid][1]) > k):
            ans = arr[mid]
            hi = mid - 1
 
        # Reducing the search space
        else:
            lo = mid + 1
 
    # Print the answer
    if (len(ans) == -1):
        print("-1")
    else:
        print("(", ans[0], ",", ans[1], ")")
 
# Driver Code
if __name__ == '__main__':
     
    # Given array and K
    arr = [ [ 3, 6 ],
            [ 15, 30 ],
            [ 25, 75 ],
            [ 30, 120 ] ]
    K = 16
 
    # Function call
    GcdPair(arr, K)
 
# This code is contributed by mohit kumar 29


C#




// C# program for
// the above approach
using System;
class GFG{
 
// Function to calculate
// the GCD of two numbers
static int GCD(int a, int b)
{
  if (b == 0)
  {
    return a;
  }
  return GCD(b, a % b);
}
 
// Function to print the pair
// having a gcd value just
// greater than the given integer
static void GcdPair(int [,]arr,
                    int k)
{
  // Initialize variables
  int lo = 0, hi = arr.Length - 1, mid;
  int []ans = {-1, 0};
 
  // Iterate until low less
  // than equal to high
  while (lo <= hi)
  {
    // Calculate mid
    mid = lo + (hi - lo) / 2;
    if (GCD(arr[mid, 0],
            arr[mid, 1]) > k)
    {
      ans = GetRow(arr, mid);
      hi = mid - 1;
    }
 
    // Reducing the search space
    else
      lo = mid + 1;
  }
 
  // Print the answer
  if (ans[0] == -1)
    Console.Write("-1");
  else
    Console.Write("( " + ans[0] +
                  ", " + ans[1] + " )");
  return;
}
 
public static int[] GetRow(int[,] matrix, int row)
{
  var rowLength = matrix.GetLength(1);
  var rowVector = new int[rowLength];
 
  for (var i = 0; i < rowLength; i++)
    rowVector[i] = matrix[row, i];
 
  return rowVector;
}
   
// Driver Code
public static void Main(String[] args)
{
  // Given array and K
  int [,]arr = {{3, 6},
                {15, 30},
                {25, 75},
                {30, 120}};
  int K = 16;
 
  // Function Call
  GcdPair(arr, K);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript program for
// the above approach
 
    // Function to calculate
    // the GCD of two numbers
    function GCD(a , b) {
        if (b == 0) {
            return a;
        }
        return GCD(b, a % b);
    }
 
    // Function to print the pair
    // having a gcd value just
    // greater than the given integer
    function GcdPair(arr , k) {
        // Initialize variables
        var lo = 0, hi = arr.length - 1, mid;
        var ans = [ -1, 0 ];
 
        // Iterate until low less
        // than equal to high
        while (lo <= hi) {
            // Calculate mid
            mid = lo + parseInt((hi - lo) / 2);
            if (GCD(arr[mid][0], arr[mid][1]) > k) {
                ans = arr[mid];
                hi = mid - 1;
            }
 
            // Reducing the search space
            else
                lo = mid + 1;
        }
 
        // Print the answer
        if (ans[0] == -1)
            document.write("-1");
        else
            document.write("( " + ans[0] + ", " + ans[1] + " )");
        return;
    }
 
    // Driver Code
     
        // Given array and K
        var arr = [ [ 3, 6 ], [ 15, 30 ], [ 25, 75 ], [ 30, 120 ] ];
        var K = 16;
 
        // Function Call
        GcdPair(arr, K);
 
// This code is contributed by todaysgaurav
 
</script>


Output

( 25, 75 )

Time Complexity: O(log(N)2
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments