Given an array arr[] of size N, the task is to make all array elements even by replacing a pair of adjacent elements with their sum.
Examples:
Input: arr[] = { 2, 4, 5, 11, 6 }
Output: 1
Explanation:
Replacing a pair (arr[2], arr[3]) with their sum ( = 5 + 11 = 16) modifies arr[] to { 2, 4, 16, 16, 6 }
Since all array elements are even, the required output is 1.Input: arr[] = { 1, 2, 4, 3, 11 }
Output: 3
Explanation:
Replacing the pair (arr[3], arr[4]) and replacing them with their sum ( = 3 + 11 = 14) modifies arr[] to { 1, 2, 4, 14, 14 }
Replacing the pair (arr[0], arr[1]) and replacing them with their sum ( = 1 + 2 = 3) modifies arr[] to { 3, 3, 4, 14, 14 }
Replacing the pair (arr[0], arr[1]) with their sum ( = 3 + 3 = 6) modifies arr[] to { 6, 6, 4, 14, 14 }.
Therefore, the required output is 3.
Approach: The idea is to use the fact that the sum of two odd numbers generates an even number. Follow the steps below to solve the problem:
- Initialize two integers, say res, to count the number of replacements, and odd_continuous_segment, to count the number of continuous odd numbers
- Traverse the array and check the following conditions for every array element:
- If arr[i] is odd, then increment the count of odd_continuous_segment by 1
- Otherwise, if odd_continuous_segment is odd, then increment res by odd_continuous_segment/2. Otherwise, increment res by odd_continuous_segment / 2 + 2 and assign odd_continuous_segment to 0.
- Check if odd_continuous_segment is odd. If found to be true, then increment res by odd_continuous_segment / 2. Otherwise increment res by (odd_continuous_segment / 2 + 2)
- Finally, print the obtained value of res
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <iostream> using namespace std; // Function to find minimum count of operations // required to make all array elements even int make_array_element_even( int arr[], int N) { // Stores minimum count of replacements // to make all array elements even int res = 0; // Stores the count of odd // continuous numbers int odd_cont_seg = 0; // Traverse the array for ( int i = 0; i < N; i++) { // If arr[i] is an odd number if (arr[i] % 2 == 1) { // Update odd_cont_seg odd_cont_seg++; } else { if (odd_cont_seg > 0) { // If odd_cont_seg is even if (odd_cont_seg % 2 == 0) { // Update res res += odd_cont_seg / 2; } else { // Update res res += (odd_cont_seg / 2) + 2; } // Reset odd_cont_seg = 0 odd_cont_seg = 0; } } } // If odd_cont_seg exceeds 0 if (odd_cont_seg > 0) { // If odd_cont_seg is even if (odd_cont_seg % 2 == 0) { // Update res res += odd_cont_seg / 2; } else { // Update res res += odd_cont_seg / 2 + 2; } } // Print the result return res; } // Drivers Code int main() { int arr[] = { 2, 4, 5, 11, 6 }; int N = sizeof (arr) / sizeof (arr[0]); cout << make_array_element_even(arr, N); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG{ // Function to find minimum count of operations // required to make all array elements even static int make_array_element_even( int arr[], int N) { // Stores minimum count of replacements // to make all array elements even int res = 0 ; // Stores the count of odd // continuous numbers int odd_cont_seg = 0 ; // Traverse the array for ( int i = 0 ; i < N; i++) { // If arr[i] is an odd number if (arr[i] % 2 == 1 ) { // Update odd_cont_seg odd_cont_seg++; } else { if (odd_cont_seg > 0 ) { // If odd_cont_seg is even if (odd_cont_seg % 2 == 0 ) { // Update res res += odd_cont_seg / 2 ; } else { // Update res res += (odd_cont_seg / 2 ) + 2 ; } // Reset odd_cont_seg = 0 odd_cont_seg = 0 ; } } } // If odd_cont_seg exceeds 0 if (odd_cont_seg > 0 ) { // If odd_cont_seg is even if (odd_cont_seg % 2 == 0 ) { // Update res res += odd_cont_seg / 2 ; } else { // Update res res += odd_cont_seg / 2 + 2 ; } } // Print the result return res; } // Drivers Code public static void main(String[] args) { int arr[] = { 2 , 4 , 5 , 11 , 6 }; int N = arr.length; System.out.print(make_array_element_even(arr, N)); } } // This code is contributed by shikhasingrajput |
Python3
# Python program to implement # the above approach # Function to find minimum count of operations # required to make all array elements even def make_array_element_even(arr, N): # Stores minimum count of replacements # to make all array elements even res = 0 # Stores the count of odd # continuous numbers odd_cont_seg = 0 # Traverse the array for i in range ( 0 , N): # If arr[i] is an odd number if (arr[i] % 2 = = 1 ): # Update odd_cont_seg odd_cont_seg + = 1 else : if (odd_cont_seg > 0 ): # If odd_cont_seg is even if (odd_cont_seg % 2 = = 0 ): # Update res res + = odd_cont_seg / / 2 else : # Update res res + = (odd_cont_seg / / 2 ) + 2 # Reset odd_cont_seg = 0 odd_cont_seg = 0 # If odd_cont_seg exceeds 0 if (odd_cont_seg > 0 ): # If odd_cont_seg is even if (odd_cont_seg % 2 = = 0 ): # Update res res + = odd_cont_seg / / 2 else : # Update res res + = odd_cont_seg / / 2 + 2 # Print the result return res # Drivers Code arr = [ 2 , 4 , 5 , 11 , 6 ] N = len (arr) print (make_array_element_even(arr, N)) # This code is contributed by shubhamsingh10 |
C#
// C# program to implement // the above approach using System; public class GFG { // Function to find minimum count of operations // required to make all array elements even static int make_array_element_even( int []arr, int N) { // Stores minimum count of replacements // to make all array elements even int res = 0; // Stores the count of odd // continuous numbers int odd_cont_seg = 0; // Traverse the array for ( int i = 0; i < N; i++) { // If arr[i] is an odd number if (arr[i] % 2 == 1) { // Update odd_cont_seg odd_cont_seg++; } else { if (odd_cont_seg > 0) { // If odd_cont_seg is even if (odd_cont_seg % 2 == 0) { // Update res res += odd_cont_seg / 2; } else { // Update res res += (odd_cont_seg / 2) + 2; } // Reset odd_cont_seg = 0 odd_cont_seg = 0; } } } // If odd_cont_seg exceeds 0 if (odd_cont_seg > 0) { // If odd_cont_seg is even if (odd_cont_seg % 2 == 0) { // Update res res += odd_cont_seg / 2; } else { // Update res res += odd_cont_seg / 2 + 2; } } // Print the result return res; } // Drivers Code public static void Main(String[] args) { int []arr = { 2, 4, 5, 11, 6 }; int N = arr.Length; Console.Write(make_array_element_even(arr, N)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to implement // the above approach // Function to find minimum count of operations // required to make all array elements even function make_array_element_even(arr, N) { // Stores minimum count of replacements // to make all array elements even let res = 0; // Stores the count of odd // continuous numbers let odd_cont_seg = 0; // Traverse the array for (let i = 0; i < N; i++) { // If arr[i] is an odd number if (arr[i] % 2 == 1) { // Update odd_cont_seg odd_cont_seg++; } else { if (odd_cont_seg > 0) { // If odd_cont_seg is even if (odd_cont_seg % 2 == 0) { // Update res res += odd_cont_seg / 2; } else { // Update res res += (odd_cont_seg / 2) + 2; } // Reset odd_cont_seg = 0 odd_cont_seg = 0; } } } // If odd_cont_seg exceeds 0 if (odd_cont_seg > 0) { // If odd_cont_seg is even if (odd_cont_seg % 2 == 0) { // Update res res += odd_cont_seg / 2; } else { // Update res res += odd_cont_seg / 2 + 2; } } // Print the result return res; } // Driver Code // Given array arr[] let arr = [ 2, 4, 5, 11, 6 ]; let N = arr.length; document.write(make_array_element_even(arr, N)); // This code is contributed by splevel62 </script> |
1
Time complexity: O(N)
Auxiliary space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!